Skip to main content
Log in

Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Voltage-gated ion channels are crucial for both neuronal and cardiac excitability. Decades of research have begun to unravel the intriguing machinery behind voltage sensitivity. Although the details regarding the arrangement and movement in the voltage-sensor domain are still debated, consensus is slowly emerging. There are three competing conceptual models: the helical-screw, the transporter, and the paddle model. In this review we explore the structure of the activated voltage-sensor domain based on the recent X-ray structure of a chimera between Kv1.2 and Kv2.1. We also present a model for the closed state. From this we conclude that upon depolarization the voltage sensor S4 moves ~13 Å outwards and rotates ~180°, thus consistent with the helical-screw model. S4 also moves relative to S3b which is not consistent with the paddle model. One interesting feature of the voltage sensor is that it partially faces the lipid bilayer and therefore can interact both with the membrane itself and with physiological and pharmacological molecules reaching the channel from the membrane. This type of channel modulation is discussed together with other mechanisms for how voltage-sensitivity is modified. Small effects on voltage-sensitivity can have profound effects on excitability. Therefore, medical drugs designed to alter the voltage dependence offer an interesting way to regulate excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hodgkin, A. (1964). The conduction of the nervous impulse. Liverpool: Liverpool University Press.

    Google Scholar 

  2. Hille, B. (2001). Ion channels of excitable membranes (3rd ed.). Sunderland, MA: Sinauer Associates Inc.

    Google Scholar 

  3. Ashcroft, F. M. (2000). Ion channels and disease (1st ed.). San Diego, CA: Academic press.

    Google Scholar 

  4. Zhou, Y., Morais-Cabral, J. H., Kaufman, A., & MacKinnon, R. (2001). Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 a resolution. Nature, 414, 43–48.

    PubMed  CAS  Google Scholar 

  5. Kuo, A., Gulbis, J. M., Antcliff, J. F., Rahman, T., Lowe, E. D., Zimmer, J., et al. (2003). Crystal structure of the potassium channel KirBac1.1 in the closed state. Science, 300, 1922–1926.

    PubMed  CAS  Google Scholar 

  6. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T., & MacKinnon, R. (2002). X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature, 415, 287–294.

    PubMed  CAS  Google Scholar 

  7. Hilf, R. J., & Dutzler, R. (2008). X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature, 452, 375–379.

    PubMed  CAS  Google Scholar 

  8. Jasti, J., Furukawa, H., Gonzales, E. B., & Gouaux, E. (2007). Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature, 449, 316–323.

    PubMed  CAS  Google Scholar 

  9. Elinder, F., Nilsson, J., & Århem, P. (2007). On the opening of voltage-gated ion channels. Physiology & Behavior, 92, 1–7.

    CAS  Google Scholar 

  10. Tombola, F., Pathak, M. M., & Isacoff, E. Y. (2006). How does voltage open an ion channel? Annual Review of Cell and Developmental Biology, 22, 23–52.

    PubMed  CAS  Google Scholar 

  11. Yu, F. H., & Catterall, W. A. (2004). The VGL-chanome: A protein superfamily specialized for electrical signaling and ionic homeostasis. Science’s STKE, 2004, re15.

    PubMed  Google Scholar 

  12. Kubo, Y., Baldwin, T. J., Jan, Y. N., & Jan, L. Y. (1993). Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature, 362, 127–133.

    PubMed  CAS  Google Scholar 

  13. Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., et al. (1998). The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science, 280, 69–77.

    PubMed  CAS  Google Scholar 

  14. Aqvist, J., & Luzhkov, V. (2000). Ion permeation mechanism of the potassium channel. Nature, 404, 881–884.

    PubMed  CAS  Google Scholar 

  15. Durell, S. R., & Guy, H. R. (1996). Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel. Neuropharmacology, 35, 761–773.

    PubMed  CAS  Google Scholar 

  16. Männikkö, R., Elinder, F., & Larsson, H. P. (2002). Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature, 419, 837–841.

    PubMed  Google Scholar 

  17. Kumanovics, A., Levin, G., & Blount, P. (2002). Family ties of gated pores: Evolution of the sensor module. FASEB Journal, 16, 1623–1629.

    PubMed  CAS  Google Scholar 

  18. Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B. T., et al. (2003). X-ray structure of a voltage-dependent K+ channel. Nature, 423, 33–41.

    PubMed  CAS  Google Scholar 

  19. Lu, Z., Klem, A. M., & Ramu, Y. (2001). Ion conduction pore is conserved among potassium channels. Nature, 413, 809–813.

    PubMed  CAS  Google Scholar 

  20. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K., & Okamura, Y. (2005). Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature, 435, 1239–1243.

    PubMed  CAS  Google Scholar 

  21. Murata, Y., & Okamura, Y. (2007). Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. Journal of Physiology, 583, 875–889.

    PubMed  CAS  Google Scholar 

  22. Kohout, S. C., Ulbrich, M. H., Bell, S. C., & Isacoff, E. Y. (2008). Subunit organization and functional transitions in Ci-VSP. Nature Structural & Molecular Biology, 15, 106–108.

    CAS  Google Scholar 

  23. Sasaki, M., Takagi, M., & Okamura, Y. (2006). A voltage sensor-domain protein is a voltage-gated proton channel. Science, 312, 589–592.

    PubMed  CAS  Google Scholar 

  24. Ramsey, I. S., Moran, M. M., Chong, J. A., & Clapham, D. E. (2006). A voltage-gated proton-selective channel lacking the pore domain. Nature, 440, 1213–1216.

    PubMed  CAS  Google Scholar 

  25. Tombola, F., Ulbrich, M. H., & Isacoff, E. Y. (2008). The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor. Neuron, 58, 546–556.

    PubMed  CAS  Google Scholar 

  26. Lee, S. Y., Letts, J. A., & Mackinnon, R. (2008). Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1. Proceedings of the National Academy of Sciences of the United States of America, 105, 7692–7695.

    PubMed  CAS  Google Scholar 

  27. Koch, H. P., Kurokawa, T., Okochi, Y., Sasaki, M., Okamura, Y., & Larsson, H. P. (2008). Multimeric nature of voltage-gated proton channels. Proceedings of the National Academy of Sciences of the United States of America, 105, 9111–9116.

    PubMed  CAS  Google Scholar 

  28. Okamura, Y. (2007). Biodiversity of voltage sensor domain proteins. Pflugers Archiv. European Journal of Physiology, 454, 361–371.

    PubMed  CAS  Google Scholar 

  29. Jan, L. Y., & Jan, Y. N. (1990). A superfamily of ion channels. Nature, 345, 672.

    PubMed  CAS  Google Scholar 

  30. Keynes, R. D., & Elinder, F. (1999). The screw-helical voltage gating of ion channels. Proceedings of the Royal Society B – Biological Sciences, 266, 843–852.

    CAS  Google Scholar 

  31. Tiwari-Woodruff, S. K., Schulteis, C. T., Mock, A. F., & Papazian, D. M. (1997). Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophysical Journal, 72, 1489–1500.

    PubMed  CAS  Google Scholar 

  32. Lecar, H., Larsson, H. P., & Grabe, M. (2003). Electrostatic model of S4 motion in voltage-gated ion channels. Biophysical Journal, 85, 2854–2864.

    PubMed  CAS  Google Scholar 

  33. Elinder, F., Arhem, P., & Larsson, H. P. (2001). Localization of the extracellular end of the voltage sensor S4 in a potassium channel. Biophysical Journal, 80, 1802–1809.

    PubMed  CAS  Google Scholar 

  34. Silverman, W. R., Roux, B., & Papazian, D. M. (2003). Structural basis of two-stage voltage-dependent activation in K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 100, 2935–2940.

    PubMed  CAS  Google Scholar 

  35. Durell, S., Hao, y., & Guy, H. (1998). Structural models of the transmembrane region of voltage.gated and other K+ channels in open, closed, and inactivated conformations. Journal of Structural Biology, 121, 263–284.

    PubMed  CAS  Google Scholar 

  36. Long, S. B., Tao, X., Campbell, E. B., & MacKinnon, R. (2007). Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature, 450, 376–382.

    PubMed  CAS  Google Scholar 

  37. Long, S. B., Campbell, E. B., & Mackinnon, R. (2005). Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science, 309, 897–903.

    PubMed  CAS  Google Scholar 

  38. Seoh, S., Sigg, D., Papazian, D., & Bezanilla, F. (1996). Voltage sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron, 16, 1159–1167.

    PubMed  CAS  Google Scholar 

  39. Aggarwal, S., & MacKinnon, R. (1996). Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron, 16, 1169–1177.

    PubMed  CAS  Google Scholar 

  40. Jogini, V., & Roux, B. (2007). Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment. Biophysical Journal, 93, 3070–3082.

    PubMed  CAS  Google Scholar 

  41. Schmidt, D., Jiang, Q. X., & MacKinnon, R. (2006). Phospholipids and the origin of cationic gating charges in voltage sensors. Nature, 444, 775–779.

    PubMed  CAS  Google Scholar 

  42. Guy, H. R., & Seetharamulu, P. (1986). Molecular model of the action potential sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 83, 508–512.

    PubMed  CAS  Google Scholar 

  43. Catterall, W. A. (1986). Voltage dependent gating of sodium channels: Correlating structure and function. Trends in Neurosciences, 9, 7–10.

    CAS  Google Scholar 

  44. Gandhi, C. S., & Isacoff, E. Y. (2002). Molecular models of voltage sensing. Journal of General Physiology, 120, 455–463.

    PubMed  CAS  Google Scholar 

  45. Papazian, D., Shao, X., Seoh, S.-A., Mock, A., Huang, Y., & Wainstock, D. (1995). Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron, 14, 1293–1301.

    PubMed  CAS  Google Scholar 

  46. Starace, D. M., & Bezanilla, F. (2001). Histidine scanning mutagenesis of basic residues of the S4 segment of the Shaker K+ channel. Journal of General Physiology, 117, 469–490.

    PubMed  CAS  Google Scholar 

  47. Shafrir, Y., Durell, S. R., & Guy, H. R. (2008). Models of voltage-dependent conformational changes in NaChBac channels. Biophysical Journal, 95, 3663–3676.

    PubMed  CAS  Google Scholar 

  48. Yang, N., George, A., Jr, & Horn, R. (1996). Molecular basis of charge movement in voltage-gated sodium channels. Neuron, 16, 113–122.

    PubMed  Google Scholar 

  49. Larsson, H. P., Baker, O. S., Dhillon, D. S., & Isacoff, E. Y. (1996). Transmembrane movement of the shaker K+ channel S4. Neuron, 16, 387–397.

    PubMed  CAS  Google Scholar 

  50. Goldstein, S. A. (1996). A structural vignette common to voltage sensors and conduction pores: Canaliculi. Neuron, 16, 717–722.

    PubMed  CAS  Google Scholar 

  51. Starace, D. M., & Bezanilla, F. (2004). A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature, 427, 548–553.

    PubMed  CAS  Google Scholar 

  52. Tombola, F., Pathak, M. M., & Isacoff, E. Y. (2005). Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron, 45, 379–388.

    PubMed  CAS  Google Scholar 

  53. Islas, L. D., & Sigworth, F. J. (2001). Electrostatics and the gating pore of Shaker potassium channels. Journal of General Physiology, 117, 69–89.

    PubMed  CAS  Google Scholar 

  54. Asamoah, O. K., Wuskell, J. P., Loew, L. M., & Bezanilla, F. (2003). A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron, 37, 85–97.

    PubMed  CAS  Google Scholar 

  55. Ahern, C. A., & Horn, R. (2005). Focused electric field across the voltage sensor of potassium channels. Neuron, 48, 25–29.

    PubMed  CAS  Google Scholar 

  56. Papazian, D. M., & Bezanilla, F. (1997). How does an ion channel sense voltage? News in Physiological Sciences, 12, 203–210.

    CAS  Google Scholar 

  57. Ruta, V., Chen, J., & MacKinnon, R. (2005). Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell, 123, 463–475.

    PubMed  CAS  Google Scholar 

  58. Broomand, A., & Elinder, F. (2008). Large-scale movement within the voltage-sensor paddle of a potassium channel-support for a helical-screw motion. Neuron, 59, 770–777.

    PubMed  CAS  Google Scholar 

  59. Chakrapani, S., Cuello, L. G., Cortes, D. M., & Perozo, E. (2008). Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer. Structure, 16, 398–409.

    PubMed  CAS  Google Scholar 

  60. Laine, M., Lin, M. C., Bannister, J. P., Silverman, W. R., Mock, A. F., Roux, B., et al. (2003). Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron, 39, 467–481.

    PubMed  CAS  Google Scholar 

  61. Treptow, W., Maigret, B., Chipot, C., & Tarek, M. (2004). Coupled motions between pore and voltage-sensor domains: A model for Shaker B, a voltage-gated potassium channel. Biophysical Journal, 87, 2365–2379.

    PubMed  CAS  Google Scholar 

  62. Jiang, Y., Ruta, V., Chen, J., Lee, A., & MacKinnon, R. (2003). The principle of gating charge movement in a voltage-dependent K+ channel. Nature, 423, 42–48.

    PubMed  CAS  Google Scholar 

  63. Cuello, L. G., Cortes, D. M., & Perozo, E. (2004). Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science, 306, 491–495.

    PubMed  CAS  Google Scholar 

  64. Lee, S. Y., & MacKinnon, R. (2004). A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature, 430, 232–235.

    PubMed  CAS  Google Scholar 

  65. Schönherr, R., Mannuzzu, L. M., Isacoff, E. Y., & Heinemann, S. H. (2002). Conformational switch between slow and fast gating modes: Allosteric regulation of voltage sensor mobility in the EAG K+ channel. Neuron, 35, 935–949.

    PubMed  Google Scholar 

  66. Xu, Y., Ramu, Y., & Lu, Z. (2008). Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature, 451, 826–829.

    PubMed  CAS  Google Scholar 

  67. Ramu, Y., Xu, Y., & Lu, Z. (2006). Enzymatic activation of voltage-gated potassium channels. Nature, 442, 696–699.

    PubMed  CAS  Google Scholar 

  68. Elinder, F., & Århem, P. (1999). Role of individual surface charges of voltage-gated K channels. Biophysical Journal, 77, 1358–1362.

    PubMed  CAS  Google Scholar 

  69. Elinder, F., Mannikko, R., & Larsson, H. P. (2001). S4 charges move close to residues in the pore domain during activation in a K channel. Journal of General Physiology, 118, 1–10.

    PubMed  CAS  Google Scholar 

  70. Gandhi, C. S., Loots, E., & Isacoff, E. Y. (2000). Reconstructing voltage sensor-pore interaction from a fluorescence scan of a voltage-gated K+ channel. Neuron, 27, 585–595.

    PubMed  CAS  Google Scholar 

  71. Elliott, D. J., Neale, E. J., Aziz, Q., Dunham, J. P., Munsey, T. S., Hunter, M., et al. (2004). Molecular mechanism of voltage sensor movements in a potassium channel. EMBO Journal, 23, 4717–4726.

    PubMed  CAS  Google Scholar 

  72. Broomand, A., Männikkö, R., Larsson, H. P., & Elinder, F. (2003). Molecular movement of the voltage sensor in a K channel. Journal of General Physiology, 122, 741–748.

    PubMed  CAS  Google Scholar 

  73. Gandhi, C. S., Clark, E., Loots, E., Pralle, A., & Isacoff, E. Y. (2003). The orientation and molecular movement of a K+ channel voltage-sensing domain. Neuron, 40, 515–525.

    PubMed  CAS  Google Scholar 

  74. Neale, E. J., Elliott, D. J., Hunter, M., & Sivaprasadarao, A. (2003). Evidence for intersubunit interactions between S4 and S5 transmembrane segments of the Shaker potassium channel. Journal of Biological Chemistry, 278, 29079–29085.

    PubMed  CAS  Google Scholar 

  75. Clayton, G. M., Altieri, S., Heginbotham, L., Unger, V. M., & Morais-Cabral, J. H. (2008). Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proceedings of the National Academy of Sciences of the United States of America, 105, 1511–1515.

    PubMed  CAS  Google Scholar 

  76. Lewis, A., Jogini, V., Blachowicz, L., Laine, M., & Roux, B. (2008). Atomic constraints between the voltage sensor and the pore domain in a voltage-gated K+ channel of known structure. Journal of General Physiology, 131, 549–561.

    PubMed  CAS  Google Scholar 

  77. Hirschberg, B., Rovner, A., Lieberman, M., & Patlak, J. (1995). Transfer of twelve charges is needed to open skeletal muscle Na+ channels. Journal of General Physiology, 106, 1053–1068.

    PubMed  CAS  Google Scholar 

  78. Sigworth, F. J. (1994). Voltage gating of ion channels. Quarterly Reviews of Biophysics, 27, 1–40.

    PubMed  CAS  Google Scholar 

  79. Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  80. Bezanilla, F. (2000). The voltage sensor in voltage-dependent ion channels. Physiological Reviews, 80, 555–592.

    PubMed  CAS  Google Scholar 

  81. Swartz, K. J. (2004). Towards a structural view of gating in potassium channels. Nature Reviews. Neuroscience, 5, 905–916.

    PubMed  CAS  Google Scholar 

  82. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., et al. (1984). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature, 312, 121–127.

    PubMed  CAS  Google Scholar 

  83. Armstrong C., M., & Bezanilla, F. (1973) Currents related to movement of the gating particles of the sodium channels. Nature, 242, 459–461.

  84. Keynes, R., & Rojas, E. (1974). Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. Journal of Physiology, 239, 393–434.

    PubMed  CAS  Google Scholar 

  85. Schoppa, N. E., McCormack, K., Tanouye, M. A., & Sigworth, F. J. (1992). The size of gating charge in wild-type and mutant Shaker potassium channels. Science, 255, 1712–1715.

    PubMed  CAS  Google Scholar 

  86. Keynes, R. D., & Elinder, F. (1998). On the slowly rising phase of the sodium gating current in the squid giant axon. Proceedings of the Royal Society B – Biological Sciences, 265, 255–262.

    CAS  Google Scholar 

  87. Noceti, F., Baldelli, P., Wei, X., Qin, N., Toro, L., Birnbaumer, L., et al. (1996). Effective gating charges per channel in voltage-dependent K+ and Ca2+ channels. Journal of General Physiology, 108, 143–155.

    PubMed  CAS  Google Scholar 

  88. Ledwell, J. L., & Aldrich, R. W. (1999). Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation. Journal of General Physiology, 113, 389–414.

    PubMed  CAS  Google Scholar 

  89. Keynes, R. D., & Elinder, F. (1998). Modelling the activation, opening, inactivation and reopening of the voltage-gated sodium channel. Proceedings of the Royal Society B – Biological Sciences, 265, 263–270.

    CAS  Google Scholar 

  90. Zagotta, W., Hoshi, T., & Aldrich, R. (1994). Shaker potassium channel gating.III. Evaluation of kinetic models for activation. Journal of General Physiology, 103, 321–362.

    PubMed  CAS  Google Scholar 

  91. Sigg, D., Stefani, E., & Bezanilla, F. (1994). Gating current noise produced by elementary transitions in Shaker potassium channels. Science, 264, 578–582.

    PubMed  CAS  Google Scholar 

  92. Schoppa, N. E., & Sigworth, F. J. (1998). Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels. Journal of General Physiology, 111, 313–342.

    PubMed  CAS  Google Scholar 

  93. Cohen, B. E., Grabe, M., & Jan, L. Y. (2003). Answers and questions from the KvAP structures. Neuron, 39, 395–400.

    PubMed  CAS  Google Scholar 

  94. Tombola, F., Pathak, M. M., Gorostiza, P., & Isacoff, E. Y. (2007). The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature, 445, 546–549.

    PubMed  CAS  Google Scholar 

  95. Durell, S. R., Shrivastava, I. H., & Guy, H. R. (2004). Models of the structure and voltage-gating mechanism of the Shaker K+ channel. Biophysical Journal, 87, 2116–2130.

    PubMed  CAS  Google Scholar 

  96. Yarov-Yarovoy, V., Baker, D., & Catterall, W. A. (2006). Voltage sensor conformations in the open and closed states in ROSETTA structural models of K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 103, 7292–7297.

    PubMed  CAS  Google Scholar 

  97. Campos, F. V., Chanda, B., Roux, B., & Bezanilla, F. (2007). Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. Proceedings of the National Academy of Sciences of the United States of America, 104, 7904–7909.

    PubMed  CAS  Google Scholar 

  98. Armstrong, C. M. (1981). Sodium channels and gating currents. Physiological Reviews, 61, 644–683.

    PubMed  CAS  Google Scholar 

  99. Elinder, F., & Arhem, P. (2003). Metal ion effects on ion channel gating. Quarterly Reviews of Biophysics, 36, 373–427.

    PubMed  CAS  Google Scholar 

  100. Blaustein, R. O., & Miller, C. (2004). Ion channels: Shake, rattle or roll? Nature, 427, 499–500.

    PubMed  CAS  Google Scholar 

  101. Cha, A., Snyder, G. E., Selvin, P. R., & Bezanilla, F. (1999). Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature, 402, 809–813.

    PubMed  CAS  Google Scholar 

  102. Glauner, K. S., Mannuzzu, L. M., Gandhi, C. S., & Isacoff, E. Y. (1999). Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature, 402, 813–817.

    PubMed  CAS  Google Scholar 

  103. Chanda, B., Asamoah, O. K., Blunck, R., Roux, B., & Bezanilla, F. (2005). Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature, 436, 852–856.

    PubMed  CAS  Google Scholar 

  104. Posson, D. J., Ge, P., Miller, C., Bezanilla, F., & Selvin, P. R. (2005). Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature, 436, 848–851.

    PubMed  CAS  Google Scholar 

  105. Long, S. B., Campbell, E. B., & Mackinnon, R. (2005). Voltage sensor of Kv1.2: Structural basis of electromechanical coupling. Science, 309, 903–908.

    PubMed  CAS  Google Scholar 

  106. Ahern, C. A., & Horn, R. (2004). Specificity of charge-carrying residues in the voltage sensor of potassium channels. Journal of General Physiology, 123, 205–216.

    PubMed  CAS  Google Scholar 

  107. Lee, H. C., Wang, J. M., & Swartz, K. J. (2003). Interaction between extracellular Hanatoxin and the resting conformation of the voltage-sensor paddle in Kv channels. Neuron, 40, 527–536.

    PubMed  CAS  Google Scholar 

  108. Pathak, M. M., Yarov-Yarovoy, V., Agarwal, G., Roux, B., Barth, P., Kohout, S., et al. (2007). Closing in on the resting state of the Shaker K+ channel. Neuron, 56, 124–140.

    PubMed  CAS  Google Scholar 

  109. Grabe, M., Lai, H. C., Jain, M., Jan, Y. N., & Jan, L. Y. (2007). Structure prediction for the down state of a potassium channel voltage sensor. Nature, 445, 550–553.

    PubMed  CAS  Google Scholar 

  110. Sokolov, S., Scheuer, T., & Catterall, W. A. (2005). Ion permeation through a voltage- sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron, 47, 183–189.

    PubMed  CAS  Google Scholar 

  111. Sokolov, S., Scheuer, T., & Catterall, W. A. (2007). Gating pore current in an inherited ion channelopathy. Nature, 446, 76–78.

    PubMed  CAS  Google Scholar 

  112. Struyk, A. F., & Cannon, S. C. (2007). A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore. Journal of General Physiology, 130, 11–20.

    PubMed  CAS  Google Scholar 

  113. Haitin, Y., Yisharel, I., Malka, E., Shamgar, L., Schottelndreier, H., Peretz, A., et al. (2008). S1 constrains S4 in the voltage sensor domain of Kv7.1K+ channels. PLoS ONE, 3, e1935.

    PubMed  Google Scholar 

  114. Aziz, Q. H., Partridge, C. J., Munsey, T. S., & Sivaprasadarao, A. (2002). Depolarization induces intersubunit cross-linking in a S4 cysteine mutant of the Shaker potassium channel. Journal of Biological Chemistry, 277, 42719–42725.

    PubMed  CAS  Google Scholar 

  115. Zhang, M., Liu, J., Jiang, M., Wu, D. M., Sonawane, K., Guy, H. R., et al. (2005). Interactions between charged residues in the transmembrane segments of the voltage-sensing domain in the hERG channel. Journal of Membrane Biology, 207, 169–181.

    PubMed  CAS  Google Scholar 

  116. Yusaf, S. P., Wray, D., & Sivaprasadarao, A. (1996). Measurement of the movement of the S4 segment during the activation of a voltage-gated potassium channel. Pflugers Archiv. European Journal of Physiology, 433, 91–97.

    PubMed  CAS  Google Scholar 

  117. Posson, D. J., & Selvin, P. R. (2008). Extent of voltage sensor movement during gating of Shaker K+ channels. Neuron, 59, 98–109.

    PubMed  CAS  Google Scholar 

  118. Phillips, L. R., Milescu, M., Li-Smerin, Y., Mindell, J. A., Kim, J. I., & Swartz, K. J. (2005). Voltage-sensor activation with a tarantula toxin as cargo. Nature, 436, 857–860.

    PubMed  CAS  Google Scholar 

  119. Gonzalez, C., Morera, F. J., Rosenmann, E., Alvarez, O., & Latorre, R. (2005). S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 102, 5020–5025.

    PubMed  CAS  Google Scholar 

  120. Gonzalez, C., Rosenman, E., Bezanilla, F., Alvarez, O., & Latorre, R. (2001). Periodic perturbations in Shaker K+ channel gating kinetics by deletions in the S3–S4 linker. Proceedings of the National Academy of Sciences of the United States of America, 98, 9617–9623.

    PubMed  CAS  Google Scholar 

  121. Terlau, H., Ludwig, J., Steffan, R., Pongs, O., Stuhmer, W., & Heinemann, S. H. (1996). Extracellular Mg2+ regulates activation of rat eag potassium channel. Pflugers Archiv. European Journal of Physiology, 432, 301–312.

    PubMed  CAS  Google Scholar 

  122. Silverman, W. R., Tang, C. Y., Mock, A. F., Huh, K. B., & Papazian, D. M. (2000). Mg2+ modulates voltage-dependent activation in ether-a-go-go potassium channels by binding between transmembrane segments S2 and S3. Journal of General Physiology, 116, 663–678.

    PubMed  CAS  Google Scholar 

  123. Honore, E., Barhanin, J., Attali, B., Lesage, F., & Lazdunski, M. (1994). External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 91, 1937–1941.

    PubMed  CAS  Google Scholar 

  124. Leifert, W. R., McMurchie, E. J., & Saint, D. A. (1999). Inhibition of cardiac sodium currents in adult rat myocytes by n-3 polyunsaturated fatty acids. Journal of Physiology, 520(Pt 3), 671–679.

    PubMed  CAS  Google Scholar 

  125. McKay, M. C., & Jennings, F. W. (2001). Linoleic acid both enhances activation and blocks Kv1.5 and Kv2.1 channels by two separate mechanisms. American Journal of Physiology, 281, 1277–1284.

    Google Scholar 

  126. Poling, J. S., Vicini, S., Rogawski, M. A., & Salem, N., Jr. (1996). Docosahexaenoic acid block of neuronal voltage-gated K+ channels: Subunit selective antagonism by zinc. Neuropharmacology, 35, 969–982.

    PubMed  CAS  Google Scholar 

  127. Xiao, Y. F., Sigg, D. C., & Leaf, A. (2005). The antiarrhythmic effect of n-3 polyunsaturated fatty acids: Modulation of cardiac ion channels as a potential mechanism. Journal of Membrane Biology, 206, 141–154.

    PubMed  CAS  Google Scholar 

  128. Xu, X. P., Erichsen, D., Börjesson, S. I., Dahlin, M., Åmark, P., & Elinder, F. (2008). Polyunsaturated fatty acids and cerebrospinal fluid from children on the ketogenic diet open a voltage-gated K channel: A putative mechanism of antiseizure action. Epilepsy Research, 80, 57–66.

    PubMed  CAS  Google Scholar 

  129. Börjesson, S. I., Hammarström, S., & Elinder, F. (2008). Lipoelectric modification of ion channel voltage gating by polyunsaturated fatty acids. Biophysical Journal, 95, 2242–2253.

    PubMed  Google Scholar 

  130. Catterall, W. A., Cestele, S., Yarov-Yarovoy, V., Yu, F. H., Konoki, K., & Scheuer, T. (2007). Voltage-gated ion channels and gating modifier toxins. Toxicon, 49, 124–141.

    PubMed  CAS  Google Scholar 

  131. Wang, S. Y., & Wang, G. K. (1998). Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxin. Proceedings of the National Academy of Sciences of the United States of America, 95, 2653–2658.

    PubMed  CAS  Google Scholar 

  132. Schnell, J. R., & Chou, J. J. (2008). Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 451, 591–595.

    PubMed  CAS  Google Scholar 

  133. Swartz, K. J. (2007). Tarantula toxins interacting with voltage sensors in potassium channels. Toxicon, 49, 213–230.

    PubMed  CAS  Google Scholar 

  134. Xiao, Y., Tang, J., Hu, W., Xie, J., Maertens, C., Tytgat, J., et al. (2005). Jingzhaotoxin-I, a novel spider neurotoxin preferentially inhibiting cardiac sodium channel inactivation. Journal of Biological Chemistry, 280, 12069–12076.

    PubMed  CAS  Google Scholar 

  135. Rogers, J. C., Qu, Y., Tanada, T. N., Scheuer, T., & Catterall, W. A. (1996). Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na+ channel alpha subunit. Journal of Biological Chemistry, 271, 15950–15962.

    PubMed  CAS  Google Scholar 

  136. Cha, A., Ruben, P. C., George, A. L., Jr., Fujimoto, E., & Bezanilla, F. (1999). Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron, 22, 73–87.

    PubMed  CAS  Google Scholar 

  137. O’Leary, M. E., Chen, L. Q., Kallen, R. G., & Horn, R. (1995). A molecular link between activation and inactivation of sodium channels. Journal of General Physiology, 106, 641–658.

    PubMed  CAS  Google Scholar 

  138. Keynes, R. D. (1994). The kinetics of voltage-gated ion channels. Quarterly Reviews of Biophysics, 27, 339–434.

    PubMed  CAS  Google Scholar 

  139. Cestele, S., Qu, Y., Rogers, J. C., Rochat, H., Scheuer, T., & Catterall, W. A. (1998). Voltage sensor-trapping: Enhanced activation of sodium channels by beta-scorpion toxin bound to the S3–S4 loop in domain II. Neuron, 21, 919–931.

    PubMed  CAS  Google Scholar 

  140. Cestele, S., Yarov-Yarovoy, V., Qu, Y., Sampieri, F., Scheuer, T., & Catterall, W. A. (2006). Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin. Journal of Biological Chemistry, 281, 21332–21344.

    PubMed  CAS  Google Scholar 

  141. Corzo, G., Gilles, N., Satake, H., Villegas, E., Dai, L., Nakajima, T., et al. (2003). Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel. FEBS Letters, 547, 43–50.

    PubMed  CAS  Google Scholar 

  142. Alabi, A. A., Bahamonde, M. I., Jung, H. J., Kim, J. I., & Swartz, K. J. (2007). Portability of paddle motif function and pharmacology in voltage sensors. Nature, 450, 370–375.

    PubMed  CAS  Google Scholar 

  143. Li-Smerin, Y., & Swartz, K. J. (1998). Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 95, 8585–8589.

    PubMed  CAS  Google Scholar 

  144. Lee, C. W., Kim, S., Roh, S. H., Endoh, H., Kodera, Y., Maeda, T., et al. (2004). Solution structure and functional characterization of SGTx1, a modifier of Kv2.1 channel gating. Biochemistry, 43, 890–897.

    PubMed  CAS  Google Scholar 

  145. Yuan, C., Yang, S., Liao, Z., & Liang, S. (2007). Effects and mechanism of Chinese tarantula toxins on the Kv2.1 potassium channels. Biochemical and Biophysical Research Communications, 352, 799–804.

    PubMed  CAS  Google Scholar 

  146. Liao, Z., Yuan, C., Peng, K., Xiao, Y., & Liang, S. (2007). Solution structure of Jingzhaotoxin-III, a peptide toxin inhibiting both Nav1.5 and Kv2.1 channels. Toxicon, 50, 135–143.

    PubMed  CAS  Google Scholar 

  147. Smith, J. J., Cummins, T. R., Alphy, S., & Blumenthal, K. M. (2007). Molecular interactions of the gating modifier toxin ProTx-II with NaV 1.5: Implied existence of a novel toxin binding site coupled to activation. Journal of Biological Chemistry, 282, 12687–12697.

    PubMed  CAS  Google Scholar 

  148. Middleton, R. E., Warren, V. A., Kraus, R. L., Hwang, J. C., Liu, C. J., Dai, G., et al. (2002). Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry, 41, 14734–14747.

    PubMed  CAS  Google Scholar 

  149. Xiao, Y., Tang, J., Yang, Y., Wang, M., Hu, W., Xie, J., et al. (2004). Jingzhaotoxin-III, a novel spider toxin inhibiting activation of voltage-gated sodium channel in rat cardiac myocytes. Journal of Biological Chemistry, 279, 26220–26226.

    PubMed  CAS  Google Scholar 

  150. Priest, B. T., Blumenthal, K. M., Smith, J. J., Warren, V. A., & Smith, M. M. (2007). ProTx-I and ProTx-II: Gating modifiers of voltage-gated sodium channels. Toxicon, 49, 194–201.

    PubMed  CAS  Google Scholar 

  151. Zhang, M., Liu, X. S., Diochot, S., Lazdunski, M., & Tseng, G. N. (2007). APETx1 from sea anemone Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go- related potassium channel. Molecular Pharmacology, 72, 259–268.

    PubMed  CAS  Google Scholar 

  152. Yeung, S. Y., Thompson, D., Wang, Z., Fedida, D., & Robertson, B. (2005). Modulation of Kv3 subfamily potassium currents by the sea anemone toxin BDS: Significance for CNS and biophysical studies. Journal of Neuroscience, 25, 8735–8745.

    PubMed  CAS  Google Scholar 

  153. Diochot, S., Loret, E., Bruhn, T., Beress, L., & Lazdunski, M. (2003). APETx1, a new toxin from the sea anemone Anthopleura elegantissima, blocks voltage-gated human ether-a-go-go-related gene potassium channels. Molecular Pharmacology, 64, 59–69.

    PubMed  CAS  Google Scholar 

  154. Wee, C. L., Bemporad, D., Sands, Z. A., Gavaghan, D., & Sansom, M. S. (2007). SGTx1, a Kv channel gating-modifier toxin, binds to the interfacial region of lipid bilayers. Biophysical Journal, 92, L07–L09.

    PubMed  CAS  Google Scholar 

  155. Milescu, M., Vobecky, J., Roh, S. H., Kim, S. H., Jung, H. J., Kim, J. I., et al. (2007). Tarantula toxins interact with voltage sensors within lipid membranes. Journal of General Physiology, 130, 497–511.

    PubMed  CAS  Google Scholar 

  156. Jung, H. J., Lee, J. Y., Kim, S. H., Eu, Y. J., Shin, S. Y., Milescu, M., et al. (2005). Solution structure and lipid membrane partitioning of VSTx1, an inhibitor of the KvAP potassium channel. Biochemistry, 44, 6015–6023.

    PubMed  CAS  Google Scholar 

  157. Suchyna, T. M., Tape, S. E., Koeppe, R. E., 2nd, Andersen, O. S., Sachs, F., & Gottlieb, P. A. (2004). Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature, 430, 235–240.

    PubMed  CAS  Google Scholar 

  158. Huang, P. T., Shiau, Y. S., & Lou, K. L. (2007). The interaction of spider gating modifier peptides with voltage-gated potassium channels. Toxicon, 49, 285–292.

    PubMed  CAS  Google Scholar 

  159. Seebohm, G. (2005). Activators of cation channels: Potential in treatment of channelopathies. Molecular Pharmacology, 67, 585–588.

    PubMed  CAS  Google Scholar 

  160. Xiong, Q., Gao, Z., Wang, W., & Li, M. (2008). Activation of Kv7 (KCNQ) voltage-gated potassium channels by synthetic compounds. Trends in Pharmacological Sciences, 29, 99–107.

    PubMed  CAS  Google Scholar 

  161. Biervert, C., Schroeder, B. C., Kubisch, C., Berkovic, S. F., Propping, P., Jentsch, T. J., et al. (1998). A potassium channel mutation in neonatal human epilepsy. Science, 279, 403–406.

    PubMed  CAS  Google Scholar 

  162. Lerche, H., Weber, Y. G., Jurkat-Rott, K., & Lehmann-Horn, F. (2005). Ion channel defects in idiopathic epilepsies. Current Pharmaceutical Design, 11, 2737–2752.

    PubMed  CAS  Google Scholar 

  163. Rostock, A., Tober, C., Rundfeldt, C., Bartsch, R., Engel, J., Polymeropoulos, E. E., et al. (1996). D-23129: A new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Research, 23, 211–223.

    PubMed  CAS  Google Scholar 

  164. Rundfeldt, C. (1997). The new anticonvulsant retigabine (D-23129) acts as an opener of K+ channels in neuronal cells. European Journal of Pharmacology, 336, 243–249.

    PubMed  CAS  Google Scholar 

  165. Bentzen, B. H., Schmitt, N., Calloe, K., Dalby Brown, W., Grunnet, M., & Olesen, S. P. (2006). The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels. Neuropharmacology, 51, 1068–1077.

    PubMed  CAS  Google Scholar 

  166. Peretz, A., Degani, N., Nachman, R., Uziyel, Y., Gibor, G., Shabat, D., et al. (2005). Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Molecular Pharmacology, 67, 1053–1066.

    PubMed  CAS  Google Scholar 

  167. Xiong, Q., Sun, H., & Li, M. (2007). Zinc pyrithione-mediated activation of voltage-gated KCNQ potassium channels rescues epileptogenic mutants. Nature Chemical Biology, 3, 287–296.

    PubMed  CAS  Google Scholar 

  168. Wuttke, T. V., Seebohm, G., Bail, S., Maljevic, S., & Lerche, H. (2005). The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Molecular Pharmacology, 67, 1009–1017.

    PubMed  CAS  Google Scholar 

  169. Schenzer, A., Friedrich, T., Pusch, M., Saftig, P., Jentsch, T. J., Grotzinger, J., et al. (2005). Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. Journal of Neuroscience, 25, 5051–5060.

    PubMed  CAS  Google Scholar 

  170. Xiong, Q., Sun, H., Zhang, Y., Nan, F., & Li, M. (2008). Combinatorial augmentation of voltage-gated KCNQ potassium channels by chemical openers. Proceedings of the National Academy of Sciences of the United States of America, 105, 3128–3133.

    PubMed  CAS  Google Scholar 

  171. Seebohm, G., Pusch, M., Chen, J., & Sanguinetti, M. C. (2003). Pharmacological activation of normal and arrhythmia-associated mutant KCNQ1 potassium channels. Circulation Research, 93, 941–947.

    PubMed  CAS  Google Scholar 

  172. Casis, O., Olesen, S. P., & Sanguinetti, M. C. (2006). Mechanism of action of a novel human ether-a-go-go-related gene channel activator. Molecular Pharmacology, 69, 658–665.

    PubMed  CAS  Google Scholar 

  173. Hansen, R. S., Diness, T. G., Christ, T., Demnitz, J., Ravens, U., Olesen, S. P., et al. (2006). Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1, 3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643). Molecular Pharmacology, 69, 266–277.

    PubMed  CAS  Google Scholar 

  174. Kang, J., Chen, X. L., Wang, H., Ji, J., Cheng, H., Incardona, J., et al. (2005). Discovery of a small molecule activator of the human ether-a-go-go-related gene (HERG) cardiac K+ channel. Molecular Pharmacology, 67, 827–836.

    PubMed  CAS  Google Scholar 

  175. Zhou, J., Augelli-Szafran, C. E., Bradley, J. A., Chen, X., Koci, B. J., Volberg, W. A., et al. (2005). Novel potent human ether-a-go-go-related gene (hERG) potassium channel enhancers and their in vitro antiarrhythmic activity. Molecular Pharmacology, 68, 876–884.

    PubMed  CAS  Google Scholar 

  176. Zeng, H., Lozinskaya, I. M., Lin, Z., Willette, R. N., Brooks, D. P., & Xu, X. (2006). Mallotoxin is a novel human ether-a-go-go-related gene (hERG) potassium channel activator. Journal of Pharmacology and Experimental Therapeutics, 319, 957–962.

    PubMed  CAS  Google Scholar 

  177. Abitbol, I., Peretz, A., Lerche, C., Busch, A. E., & Attali, B. (1999). Stilbenes and fenamates rescue the loss of I(KS) channel function induced by an LQT5 mutation and other IsK mutants. EMBO Journal, 18, 4137–4148.

    PubMed  CAS  Google Scholar 

  178. Freites, J. A., Tobias, D. J., von Heijne, G., & White, S. H. (2005). Interface connections of a transmembrane voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 102, 15059–15064.

    PubMed  CAS  Google Scholar 

  179. Suh, B. C., & Hille, B. (2005). Regulation of ion channels by phosphatidylinositol 4, 5-bisphosphate. Current Opinion in Neurobiology, 15, 370–378.

    PubMed  CAS  Google Scholar 

  180. Li, Y., Gamper, N., Hilgemann, D. W., & Shapiro, M. S. (2005). Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4, 5-bisphosphate. Journal of Neuroscience, 25, 9825–9835.

    PubMed  CAS  Google Scholar 

  181. Zhang, H., Craciun, L. C., Mirshahi, T., Rohacs, T., Lopes, C. M., Jin, T., et al. (2003). PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron, 37, 963–975.

    PubMed  CAS  Google Scholar 

  182. Zolles, G., Klocker, N., Wenzel, D., Weisser-Thomas, J., Fleischmann, B. K., Roeper, J., et al. (2006). Pacemaking by HCN channels requires interaction with phosphoinositides. Neuron, 52, 1027–1036.

    PubMed  CAS  Google Scholar 

  183. Andersen, O. S., & Koeppe, R. E., 2nd. (2007). Bilayer thickness and membrane protein function: An energetic perspective. Annual Review of Biophysics and Biomolecular Structure, 36, 107–130.

    PubMed  CAS  Google Scholar 

  184. Tillman, T. S., & Cascio, M. (2003). Effects of membrane lipids on ion channel structure and function. Cell Biochemistry and Biophysics, 38, 161–190.

    PubMed  CAS  Google Scholar 

  185. Elliott, J. R., Haydon, D. A., Hendry, B. M., & Needham, D. (1985). Inactivation of the sodium current in squid giant axons by hydrocarbons. Biophysical Journal, 48, 617–622.

    Article  PubMed  CAS  Google Scholar 

  186. Haydon, D. A., & Urban, B. W. (1983). The action of alcohols and other non-ionic surface active substances on the sodium current of the squid giant axon. Journal of Physiology, 341, 411–427.

    PubMed  CAS  Google Scholar 

  187. Kelkar, D. A., & Chattopadhyay, A. (2007). The gramicidin ion channel: A model membrane protein. Biochimica et Biophysica Acta, 1768, 2011–2025.

    PubMed  CAS  Google Scholar 

  188. Lundbaek, J. A. (2008). Lipid bilayer-mediated regulation of ion channel function by amphiphilic drugs. Journal of General Physiology, 131, 421–429.

    PubMed  CAS  Google Scholar 

  189. Lundbaek, J. A., Birn, P., Hansen, A. J., Sogaard, R., Nielsen, C., Girshman, J., et al. (2004). Regulation of sodium channel function by bilayer elasticity: The importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol. Journal of General Physiology, 123, 599–621.

    PubMed  CAS  Google Scholar 

  190. Abbott, G. W., & Goldstein, S. A. (2001). Potassium channel subunits encoded by the KCNE gene family: Physiology and pathophysiology of the MinK-related peptides (MiRPs). Molecular Interventions, 1, 95–107.

    PubMed  CAS  Google Scholar 

  191. McCrossan, Z. A., & Abbott, G. W. (2004). The MinK-related peptides. Neuropharmacology, 47, 787–821.

    PubMed  CAS  Google Scholar 

  192. Bett, G. C., & Rasmusson, R. L. (2008). Modification of K+ channel-drug interactions by ancillary subunits. Journal of Physiology, 586, 929–950.

    PubMed  CAS  Google Scholar 

  193. Gulbis, J. M., Mann, S., & MacKinnon, R. (1999). Structure of a voltage-dependent K+ channel beta subunit. Cell, 97, 943–952.

    PubMed  CAS  Google Scholar 

  194. Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M., & Romey, G. (1996). K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature, 384, 78–80.

    PubMed  CAS  Google Scholar 

  195. Sanguinetti, M. C., Curran, M. E., Zou, A., Shen, J., Spector, P. S., Atkinson, D. L., et al. (1996). Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature, 384, 80–83.

    PubMed  CAS  Google Scholar 

  196. Schroeder, B. C., Waldegger, S., Fehr, S., Bleich, M., Warth, R., Greger, R., et al. (2000). A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature, 403, 196–199.

    PubMed  CAS  Google Scholar 

  197. Nakajo, K., & Kubo, Y. (2007). KCNE1 and KCNE3 stabilize and/or slow voltage sensing S4 segment of KCNQ1 channel. Journal of General Physiology, 130, 269–281.

    PubMed  CAS  Google Scholar 

  198. Panaghie, G., & Abbott, G. W. (2007). The role of S4 charges in voltage-dependent and voltage-independent KCNQ1 potassium channel complexes. Journal of General Physiology, 129, 121–133.

    PubMed  CAS  Google Scholar 

  199. Chen, H., & Goldstein, S. A. (2007). Serial perturbation of MinK in IKs implies an alpha-helical transmembrane span traversing the channel corpus. Biophysical Journal, 93, 2332–2340.

    PubMed  CAS  Google Scholar 

  200. Xu, X., Jiang, M., Hsu, K. L., Zhang, M., & Tseng, G. N. (2008). KCNQ1 and KCNE1 in the IKs channel complex make state-dependent contacts in their extracellular domains. Journal of General Physiology, 131, 589–603.

    PubMed  CAS  Google Scholar 

  201. Shamgar, L., Haitin, Y., Yisharel, I., Malka, E., Schottelndreier, H., Peretz, A., et al. (2008). KCNE1 constrains the voltage sensor of Kv7.1K+ channels. PLoS ONE, 3, e1943.

    PubMed  Google Scholar 

  202. Chen, H., Kim, L. A., Rajan, S., Xu, S., & Goldstein, S. A. (2003). Charybdotoxin binding in the I(Ks) pore demonstrates two MinK subunits in each channel complex. Neuron, 40, 15–23.

    PubMed  CAS  Google Scholar 

  203. Morin, T. J., & Kobertz, W. R. (2008). Counting membrane-embedded KCNE beta-subunits in functioning K+ channel complexes. Proceedings of the National Academy of Sciences of the United States of America, 105, 1478–1482.

    PubMed  CAS  Google Scholar 

  204. Morin, T. J., & Kobertz, W. R. (2007). A derivatized scorpion toxin reveals the functional output of heteromeric KCNQ1-KCNE K+ channel complexes. ACS Chemical Biology, 2, 469–473.

    PubMed  CAS  Google Scholar 

  205. Manderfield, L. J., & George, A. L., Jr. (2008). KCNE4 can co-associate with the I(Ks) (KCNQ1-KCNE1) channel complex. FEBS Journal, 275, 1336–1349.

    PubMed  CAS  Google Scholar 

  206. Nadal, M. S., Ozaita, A., Amarillo, Y., Vega-Saenz de Miera, E., Ma, Y., Mo, W., et al. (2003). The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron, 37, 449–461.

    PubMed  CAS  Google Scholar 

  207. Soh, H., & Goldstein, S. A. (2008). I SA channel complexes include four subunits each of DPP6 and Kv4.2. Journal of Biological Chemistry, 283, 15072–15077.

    PubMed  CAS  Google Scholar 

  208. Dougherty, K., & Covarrubias, M. (2006). A dipeptidyl aminopeptidase-like protein remodels gating charge dynamics in Kv4.2 channels. Journal of General Physiology, 128, 745–753.

    PubMed  CAS  Google Scholar 

  209. Liu, G., Zakharov, S. I., Yang, L., Deng, S. X., Landry, D. W., Karlin, A., et al. (2008). Position and role of the BK channel alpha subunit S0 helix inferred from disulphide crosslinking. Journal of General Physiology, 131, 537–548.

    PubMed  CAS  Google Scholar 

  210. Orio, P., & Latorre, R. (2005). Differential effects of beta 1 and beta 2 subunits on BK channel activity. Journal of General Physiology, 125, 395–411.

    PubMed  CAS  Google Scholar 

  211. Liu, G., Zakharov, S. I., Yang, L., Wu, R. S., Deng, S. X., Landry, D. W., et al. (2008). Locations of the beta1 transmembrane helices in the BK potassium channel. Proceedings of the National Academy of Sciences of the United States of America, 105, 10727–10732.

    PubMed  CAS  Google Scholar 

  212. Craven, K. B., & Zagotta, W. N. (2006). CNG and HCN channels: Two peas, one pod. Annual Review of Physiology, 68, 375–401.

    PubMed  CAS  Google Scholar 

  213. Wang, Z., Jiang, Y., Lu, L., Huang, R., Hou, Q., & Shi, F. (2007). Molecular mechanisms of cyclic nucleotide-gated ion channel gating. Journal of Genetics and Genomics, 34, 477–485.

    PubMed  CAS  Google Scholar 

  214. Zhou, L., & Siegelbaum, S. A. (2007). Gating of HCN channels by cyclic nucleotides: Residue contacts that underlie ligand binding, selectivity, and efficacy. Structure, 15, 655–670.

    PubMed  CAS  Google Scholar 

  215. Wainger, B. J., DeGennaro, M., Santoro, B., Siegelbaum, S. A., & Tibbs, G. R. (2001). Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature, 411, 805–810.

    PubMed  CAS  Google Scholar 

  216. Niu, X., Qian, X., & Magleby, K. L. (2004). Linker-gating ring complex as passive spring and Ca2+-dependent machine for a voltage- and Ca2+-activated potassium channel. Neuron, 42, 745–756.

    PubMed  CAS  Google Scholar 

  217. Latorre, R., & Brauchi, S. (2006). Large conductance Ca2+-activated K+ (BK) channel: Activation by Ca2+ and voltage. Biological Research, 39, 385–401.

    PubMed  CAS  Google Scholar 

  218. Zhang, X., Solaro, C. R., & Lingle, C. J. (2001). Allosteric regulation of BK channel gating by Ca2+ and Mg2+ through a nonselective, low affinity divalent cation site. Journal of General Physiology, 118, 607–636.

    PubMed  CAS  Google Scholar 

  219. Yang, H., Hu, L., Shi, J., Delaloye, K., Horrigan, F. T., & Cui, J. (2007). Mg2+ mediates interaction between the voltage sensor and cytosolic domain to activate BK channels. Proceedings of the National Academy of Sciences of the United States of America, 104, 18270–18275.

    PubMed  CAS  Google Scholar 

  220. Horrigan, F. T., & Ma, Z. (2008). Mg2+ enhances voltage sensor/gate coupling in BK channels. Journal of General Physiology, 131, 13–32.

    PubMed  CAS  Google Scholar 

  221. Papazian, D. M., Timpe, L. C., Jan, Y. N., & Jan, L. Y. (1991). Alteration of voltage dependence of Shaker potassium channel by mutations in the S4 sequence. Nature, 349, 305–310.

    PubMed  CAS  Google Scholar 

  222. Baker, O. S., Larsson, H. P., Mannuzzu, L. M., & Isacoff, E. Y. (1998). Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating. Neuron, 20, 1283–1294.

    PubMed  CAS  Google Scholar 

  223. Stühmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., et al. (1989). Structural parts involved in activation and inactivation of the sodium channel. Nature, 339, 597–603.

    PubMed  Google Scholar 

  224. Broomand, A., Osterberg, F., Wardi, T., & Elinder, F. (2007). Electrostatic domino effect in the Shaker K channel turret. Biophysical Journal, 93, 2307–2314.

    PubMed  CAS  Google Scholar 

  225. Smith-Maxwell, C. J., Ledwell, J. L., & Aldrich, R. W. (1998). Uncharged S4 residues and cooperativity in voltage-dependent potassium channel activation. Journal of General Physiology, 111, 421–439.

    PubMed  CAS  Google Scholar 

  226. Pathak, M., Kurtz, L., Tombola, F., & Isacoff, E. (2005). The cooperative voltage sensor motion that gates a potassium channel. Journal of General Physiology, 125, 57–69.

    PubMed  CAS  Google Scholar 

  227. Bhalla, T., Rosenthal, J. J., Holmgren, M., & Reenan, R. (2004). Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nature Structural & Molecular Biology, 11, 950–956.

    CAS  Google Scholar 

  228. Patton, D. E., Silva, T., & Bezanilla, F. (1997). RNA editing generates a diverse array of transcripts encoding squid Kv2K+ channels with altered functional properties. Neuron, 19, 711–722.

    PubMed  CAS  Google Scholar 

  229. Seeburg, P. H., & Hartner, J. (2003). Regulation of ion channel/neurotransmitter receptor function by RNA editing. Current Opinion in Neurobiology, 13, 279–283.

    PubMed  CAS  Google Scholar 

  230. Rosenthal, J. J., & Bezanilla, F. (2002). Extensive editing of mRNAs for the squid delayed rectifier K+ channel regulates subunit tetramerization. Neuron, 34, 743–757.

    PubMed  CAS  Google Scholar 

  231. Cushman, S. J., Nanao, M. H., Jahng, A. W., DeRubeis, D., Choe, S., & Pfaffinger, P. J. (2000). Voltage dependent activation of potassium channels is coupled to T1 domain structure. Nature Structural Biology, 7, 403–407.

    PubMed  CAS  Google Scholar 

  232. Minor, D. L., Lin, Y. F., Mobley, B. C., Avelar, A., Jan, Y. N., Jan, L. Y., et al. (2000). The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell, 102, 657–670.

    PubMed  CAS  Google Scholar 

  233. Robinson, J. M., & Deutsch, C. (2005). Coupled tertiary folding and oligomerization of the T1 domain of Kv channels. Neuron, 45, 223–232.

    PubMed  CAS  Google Scholar 

  234. Wang, G., & Covarrubias, M. (2006). Voltage-dependent gating rearrangements in the intracellular T1–T1 interface of a K+ channel. Journal of General Physiology, 127, 391–400.

    PubMed  CAS  Google Scholar 

  235. Lin, Y., McDonough, S. I., & Lipscombe, D. (2004). Alternative splicing in the voltage-sensing region of N-Type CaV2.2 channels modulates channel kinetics. Journal of Neurophysiology, 92, 2820–2830.

    PubMed  CAS  Google Scholar 

  236. Fozzard, H. A., & Kyle, J. W. (2002). Do defects in ion channel glycosylation set the stage for lethal cardiac arrhythmias? Science’s STKE, 2002, PE19.

    PubMed  Google Scholar 

  237. Watanabe, I., Wang, H. G., Sutachan, J. J., Zhu, J., Recio-Pinto, E., & Thornhill, W. B. (2003). Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism. Journal of Physiology, 550, 51–66.

    PubMed  CAS  Google Scholar 

  238. Watanabe, I., Zhu, J., Sutachan, J. J., Gottschalk, A., Recio-Pinto, E., & Thornhill, W. B. (2007). The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials. Brain Research, 1144, 1–18.

    PubMed  CAS  Google Scholar 

  239. Johnson, D., & Bennett, E. S. (2008). Gating of the Shaker potassium channel is modulated differentially by N-glycosylation and sialic acids. Pflugers Archiv. European Journal of Physiology, 456, 393–405.

    PubMed  CAS  Google Scholar 

  240. Davis, M. J., Wu, X., Nurkiewicz, T. R., Kawasaki, J., Gui, P., Hill, M. A., et al. (2001). Regulation of ion channels by protein tyrosine phosphorylation. American Journal of Physiology Heart and Circulatory Physiology, 281, H1835–H1862.

    PubMed  CAS  Google Scholar 

  241. Li, C. H., Zhang, Q., Teng, B., Mustafa, S. J., Huang, J. Y., & Yu, H. G. (2008). Src tyrosine kinase alters gating of hyperpolarization-activated HCN4 pacemaker channel through Tyr531. American Journal of Physiology. Cell Physiology, 294, C355–C362.

    PubMed  CAS  Google Scholar 

  242. Mohapatra, D. P., Park, K. S., & Trimmer, J. S. (2007). Dynamic regulation of the voltage-gated Kv2.1 potassium channel by multisite phosphorylation. Biochemical Society Transactions, 35, 1064–1068.

    PubMed  CAS  Google Scholar 

  243. Mohapatra, D. P., & Trimmer, J. S. (2006). The Kv2.1 C terminus can autonomously transfer Kv2.1-like phosphorylation-dependent localization, voltage-dependent gating, and muscarinic modulation to diverse Kv channels. Journal of Neuroscience, 26, 685–695.

    PubMed  CAS  Google Scholar 

  244. Misonou, H., Mohapatra, D. P., Menegola, M., & Trimmer, J. S. (2005). Calcium- and metabolic state-dependent modulation of the voltage-dependent Kv2.1 channel regulates neuronal excitability in response to ischemia. Journal of Neuroscience, 25, 11184–11193.

    PubMed  CAS  Google Scholar 

  245. Misonou, H., Mohapatra, D. P., Park, E. W., Leung, V., Zhen, D., Misonou, K., et al. (2004). Regulation of ion channel localization and phosphorylation by neuronal activity. Nature Neuroscience, 7, 711–718.

    PubMed  CAS  Google Scholar 

  246. Perozo, E., & Bezanilla, F. (1990). Phosphorylation affects voltage gating of the delayed rectifier K+ channel by electrostatic interactions. Neuron, 5, 685–690.

    PubMed  CAS  Google Scholar 

  247. Anderson, A. E., Adams, J. P., Qian, Y., Cook, R. G., Pfaffinger, P. J., & Sweatt, J. D. (2000). Kv4.2 phosphorylation by cyclic AMP-dependent protein kinase. Journal of Biological Chemistry, 275, 5337–5346.

    PubMed  CAS  Google Scholar 

  248. Jonas, E. A., & Kaczmarek, L. K. (1996). Regulation of potassium channels by protein kinases. Current Opinion in Neurobiology, 6, 318–323.

    PubMed  CAS  Google Scholar 

  249. Surti, T. S., Huang, L., Jan, Y. N., Jan, L. Y., & Cooper, E. C. (2005). Identification by mass spectrometry and functional characterization of two phosphorylation sites of KCNQ2/KCNQ3 channels. Proceedings of the National Academy of Sciences of the United States of America, 102, 17828–17833.

    PubMed  CAS  Google Scholar 

  250. Zong, X., Eckert, C., Yuan, H., Wahl-Schott, C., Abicht, H., Fang, L., et al. (2005). A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase. Journal of Biological Chemistry, 280, 34224–34232.

    PubMed  CAS  Google Scholar 

  251. Nakajo, K., & Kubo, Y. (2005). Protein kinase C shifts the voltage dependence of KCNQ/M channels expressed in Xenopus oocytes. Journal of Physiology, 569, 59–74.

    PubMed  CAS  Google Scholar 

  252. Rezazadeh, S., Kurata, H. T., Claydon, T. W., Kehl, S. J., & Fedida, D. (2007). An activation gating switch in Kv1.2 is localized to a threonine residue in the S2–S3 linker. Biophysical Journal, 93, 4173–4186.

    PubMed  CAS  Google Scholar 

  253. Gubitosi-Klug, R. A., Mancuso, D. J., & Gross, R. W. (2005). The human Kv1.1 channel is palmitoylated, modulating voltage sensing: Identification of a palmitoylation consensus sequence. Proceedings of the National Academy of Sciences of the United States of America, 102, 5964–5968.

    PubMed  CAS  Google Scholar 

  254. Jindal, H. K., Folco, E. J., Liu, G. X., & Koren, G. (2008). Post-translational modification of voltage-dependent potassium channel Kv1.5: C-terminal palmitoylation modulates its biological properties. American Journal of Physiology Heart and Circulatory Physiology, 294, H2012–H2021.

    PubMed  CAS  Google Scholar 

  255. Tang, X. D., Santarelli, L. C., Heinemann, S. H., & Hoshi, T. (2004). Metabolic regulation of potassium channels. Annual Review of Physiology, 66, 131–159.

    PubMed  CAS  Google Scholar 

  256. Gamper, N., Zaika, O., Li, Y., Martin, P., Hernandez, C. C., Perez, M. R., et al. (2006). Oxidative modification of M-type K+ channels as a mechanism of cytoprotective neuronal silencing. EMBO Journal, 25, 4996–5004.

    PubMed  CAS  Google Scholar 

  257. Li, Y., Gamper, N., & Shapiro, M. S. (2004). Single-channel analysis of KCNQ K+ channels reveals the mechanism of augmentation by a cysteine-modifying reagent. Journal of Neuroscience, 24, 5079–5090.

    PubMed  CAS  Google Scholar 

  258. Roche, J. P., Westenbroek, R., Sorom, A. J., Hille, B., Mackie, K., & Shapiro, M. S. (2002). Antibodies and a cysteine-modifying reagent show correspondence of M current in neurons to KCNQ2 and KCNQ3K+ channels. British Journal of Pharmacology, 137, 1173–1186.

    PubMed  CAS  Google Scholar 

  259. Kerst, G., Brousos, H., Schreiber, R., Nitschke, R., Hug, M. J., Greger, R., et al. (2002). The oxidant thimerosal modulates gating behavior of KCNQ1 by interaction with the channel outer shell. Journal of Membrane Biology, 186, 89–100.

    PubMed  CAS  Google Scholar 

  260. Frankenhaeuser, B., & Huxley, A. F. (1964). The action potential in the myelinated nerve fiber of Xenopus laevis as computed on the basis of voltage clamp data. Journal of Physiology, 171, 302–315.

    PubMed  CAS  Google Scholar 

  261. Robbins, J. (2001). KCNQ potassium channels: Physiology, pathophysiology, and pharmacology. Pharmacology and Therapeutics, 90, 1–19.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Bohdan Olaf Sklepkovych (Strategic Communications Grants Office, Linköping University) for linguistic advice. This study was supported by grants from the Swedish Research Council, Linköping University, the County Council of Östergötland, and the Swedish Heart-Lung Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Elinder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Börjesson, S.I., Elinder, F. Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels. Cell Biochem Biophys 52, 149–174 (2008). https://doi.org/10.1007/s12013-008-9032-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-008-9032-5

Keywords

Navigation