Skip to main content

Advertisement

Log in

Inflammatory and Vasoactive Effects of Serum Following Inhalation of Varied Complex Mixtures

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Chronic cardiovascular disease is associated with air pollution exposure in epidemiology and toxicology studies. Inhaled toxicants can induce changes in serum bioactivity that impact endothelial inflammatory gene expression in vitro and impair vasorelaxation ex vivo, which are common precursors to atherosclerosis. Comparisons between single pollutants and common combustion mixtures, in terms of driving such serum inflammatory and vasoactive effects, have not been characterized. Healthy C57BL/6 mice were exposed to a single 6-h period of contrasting pollutant atmospheres: road dust, mixed vehicle emissions (MVE; a combination of gasoline and diesel engine emissions) particulate matter, mixed vehicle emissions gases, road dust plus ozone, road dust plus MVE, and hardwood smoke. Serum obtained from mice 24 h after these exposures was used as a stimulus to assess inflammatory potential in two assays: incubated with primary murine cerebrovascular endothelial cells for 4 h to measure inflammatory gene expression or applied to naïve aortic rings in an ex vivo myographic preparation. Road dust and wood smoke exposures were most potent at inducing inflammatory gene expression, while MVE atmospheres and wood smoke were most potent at impairing vasorelaxation to acetylcholine. Responses are consistent with recent reports on MVE toxicity, but reveal novel serum bioactivity related to wood smoke and road dust. These studies suggest that the compositional changes in serum and resultant bioactivity following inhalation exposure to pollutants may be highly dependent on the composition of mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen, R. W., Carlsten, C., Karlen, B., Leckie, S., van Eeden, S., Vedal, S., et al. (2011). An air filter intervention study of endothelial function among healthy adults in a woodsmoke-impacted community. American Journal of Respiratory and Critical Care Medicine, 183, 1222–1230.

    Article  PubMed  Google Scholar 

  2. Bell, M. L., Ebisu, K., Leaderer, B. P., Gent, J. F., Lee, H. J., Koutrakis, P., et al. (2014). Associations of PM(2). (5) constituents and sources with hospital admissions: analysis of four counties in Connecticut and Massachusetts (USA) for persons ≥65 years of age. Environmental Health Perspectives, 122, 138–144.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brook, R. D., Cakmak, S., Turner, M. C., Brook, J. R., Crouse, D. L., Peters, P. A., et al. (2013). Long-term fine particulate matter exposure and mortality from diabetes in Canada. Diabetes Care, 36, 3313–3320.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Campen, M., Robertson, S., Lund, A., Lucero, J., & McDonald, J. (2014). Engine exhaust particulate and gas phase contributions to vascular toxicity. Inhalation Toxicology, 26, 353–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Channell, M. M., Paffett, M. L., Devlin, R. B., Madden, M. C., & Campen, M. J. (2012). Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: evidence from a novel translational in vitro model. Toxicological Sciences, 127, 179–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cung, H., Aragon, M., Anderson, J., Nawarskas, J., Roldan, C., Sood, A., Qualls, C., Campen, M. J. (2015). Characterization of a novel endothelial biosensor assay reveals increased cumulative serum inflammatory potential in stabilized coronary artery disease patients. Journal of Translational Medicine, minor revisions.

  7. Forchhammer, L., Møller, P., Riddervold, I. S., Bønløkke, J., Massling, A., Sigsgaard, T., et al. (2012). Controlled human wood smoke exposure: Oxidative stress, inflammation and microvascular function. Particle and Fibre Toxicology. doi:10.1186/1743-8977-9-7.

  8. Hoffmann, B., Moebus, S., Dragano, N., Mohlenkamp, S., Memmesheimer, M., Erbel, R., et al. (2009). Residential traffic exposure and coronary heart disease: Results from the Heinz Nixdorf Recall Study. Biomarkers : Biochemical indicators of exposure, response, and susceptibility to chemicals, 14(Suppl 1), 74–78.

    Article  CAS  Google Scholar 

  9. Hunter, A. L., Unosson, J., Bosson, J. A., Langrish, J. P., Pourazar, J., Raftis, J. B., et al. (2014). Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters. Particle and Fibre Toxicology, 11, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liberda, E. N., Cuevas, A. K., Qu, Q., & Chen, L. C. (2014). The acute exposure effects of inhaled nickel nanoparticles on murine endothelial progenitor cells. Inhalation Toxicology, 26, 588–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  12. Mauderly, J. L., & Seilkop, S. K. (2014). The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: III. Components of diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions driving non-cancer biological responses in rodents. Inhalation Toxicology, 26, 668–690.

    Article  CAS  PubMed  Google Scholar 

  13. McDonald, J. D., Barr, E. B., & White, R. K. (2004). Design, characterization, and evaluation of a small-scale diesel exhaust exposure system. Aerosol Science Technology, 38, 62–78.

    Article  CAS  Google Scholar 

  14. McDonald, J. D., Barr, E. B., White, R. K., Kracko, D., Chow, J. C., Zielinska, B., & Grosjean, E. (2008). Generation and characterization of gasoline engine exhaust inhalation exposure atmospheres. Inhalation Toxicology, 20, 1157–1168.

    Article  CAS  PubMed  Google Scholar 

  15. Mercer, R. R., Scabilloni, J. F., Hubbs, A. F., Wang, L., Battelli, L. A., McKinney, W., et al. (2013). Extrapulmonary transport of MWCNT following inhalation exposure. Particle and Fibre Toxicology, 10, 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mills, N. L., Tornqvist, H., Robinson, S. D., Gonzalez, M., Darnley, K., MacNee, W., et al. (2005). Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation, 112, 3930–3936.

    Article  CAS  PubMed  Google Scholar 

  17. Otterbein, L. E., Zuckerbraun, B. S., Haga, M., Liu, F., Song, R., Usheva, A., et al. (2003). Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nature Medicine, 9, 183–190.

    Article  CAS  PubMed  Google Scholar 

  18. Pope, C. A, 3rd, Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., & Godleski, J. J. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109, 71–77.

    Article  PubMed  Google Scholar 

  19. Postlethwait, E. M., Langford, S. D., & Bidani, A. (1990). Reactive absorption of nitrogen dioxide by pulmonary epithelial lining fluid. Journal of Applied Physiology, 69, 523–531.

    CAS  PubMed  Google Scholar 

  20. Postlethwait, E. M., Langford, S. D., & Bidani, A. (1994). Determinants of inhaled ozone absorption in isolated rat lungs. Toxicology and Applied Pharmacology, 125, 77–89.

    Article  CAS  PubMed  Google Scholar 

  21. Robertson, S., Colombo, E. S., Lucas, S. N., Hall, P. R., Febbraio, M., Paffett, M. L., & Campen, M. J. (2013). CD36 mediates endothelial dysfunction downstream of circulating factors induced by O3 exposure. Toxicological Sciences, 134, 304–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ross, R. (1999). Atherosclerosis—An inflammatory disease. New England Journal of Medicine, 340, 115–126.

    Article  CAS  PubMed  Google Scholar 

  23. Sarnat, J. A., Marmur, A., Klein, M., Kim, E., Russell, A. G., Sarnat, S. E., et al. (2008). Fine particle sources and cardiorespiratory morbidity: An application of chemical mass balance and factor analytical source-apportionment methods. Environmental Health Perspectives, 116, 459–466.

    PubMed  PubMed Central  Google Scholar 

  24. Schisler, J. C., Ronnebaum, S. M., Madden, M., Channell, M. M., Campen, M. J., Willis, M. S. (2015). Endothelial inflammatory transcriptional responses to an altered plasma exposome following inhalation of diesel emissions. Inhalation Toxicology (in press).

  25. Seilkop, S. K., Campen, M. J., Lund, A. K., McDonald, J. D., & Mauderly, J. L. (2012). Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice. Inhalation Toxicology, 24, 270–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Unosson, J., Blomberg, A., Sandstrom, T., Muala, A., Boman, C., Nystrom, R., et al. (2013). Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans. Particle and Fibre Toxicology, 10, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vedal, S., Campen, M. J., McDonald, J. D., Kaufman, J. D., Larson, T. V., Sampson, P. D., et al. (2013). National particle component toxicity (NPACT) initiative report on cardiovascular effects. Research Report, 178, 238.

    Google Scholar 

Download references

Acknowledgments

This study was funded by Grants from the National Institutes of Health (R01 ES014639, R01 HL114839, HL115106, T32 HL007736) and the Environmental Protection Agency (RD-83479601-0). The views expressed in this document are solely those of the authors, and the US EPA does not endorse any products or commercial services mentioned in this publication.

Ethical standard

The authors confirm that they have no conflicts of interest, financial or otherwise, with the contents of this manuscript. Studies were conducted with full approval by the Institutional Animal Care and Use Committees of both the University of New Mexico and Lovelace Respiratory Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Campen.

Additional information

Mario J. Aragon and Izabela Chrobak have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aragon, M.J., Chrobak, I., Brower, J. et al. Inflammatory and Vasoactive Effects of Serum Following Inhalation of Varied Complex Mixtures. Cardiovasc Toxicol 16, 163–171 (2016). https://doi.org/10.1007/s12012-015-9325-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9325-z

Keywords

Navigation