Skip to main content

Advertisement

Log in

Anatomical Regional Differences in Selenium Levels in the Human Brain

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The role of selenium in human brain physiology, as well as in aging and neurodegenerative processes, remains unclear. Thus, the aim of this study was to establish the “normal” (reference) levels for selenium in the human brain, as well as anatomical regional differences and age-related changes. Using inductively coupled plasma-mass spectrometry after sample microwave-assisted acid digestion, selenium levels were measured in 14 different areas of the brain of adult individuals (n = 42; 71 ± 12, range 50–101 years old) without a known history of neurodegenerative, neurological, or psychiatric disorders. In the whole data set (n = 588; 42 individuals × 14 brain areas), selenium levels ranged from 552 to 1435 ng/g, with a mean ± SD content of 959 ± 178 ng/g (dry weight basis). Selenium distribution across the different brain areas was heterogeneous, with the highest levels in the putamen, parietal inferior lobule, and occipital cortex and the lowest expression in the medulla and cerebellum. Selenium levels were unchanged with aging. Compared with the age-matched control group, significantly increased levels of selenium were found in the globus pallidus, superior temporal gyrus, and frontal cortex of Parkinson’s disease (n = 1) and Alzheimer’s disease (n = 2) patients. This study provides new data on the anatomical regional differences in selenium levels in the human brain, which will aid future interpretation of studies examining brain tissue affected by neurodegenerative (and other) brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9(7):775–806

    Article  CAS  PubMed  Google Scholar 

  2. Rotruck JT, Pope AL, Ganther HE et al (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science (New York, NY) 179(4073):588–590

    Article  CAS  Google Scholar 

  3. Chu FF, Doroshow JH, Esworthy RS (1993) Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J Biol Chem 268(4):2571–2576

    CAS  PubMed  Google Scholar 

  4. Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4(2b):593–599

    Article  CAS  PubMed  Google Scholar 

  5. Avissar N, Ornt DB, Yagil Y et al (1994) Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am J Physiol 266(2 Pt 1):C367–375

    CAS  PubMed  Google Scholar 

  6. Ursini F, Maiorino M, Gregolin C (1985) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta 839(1):62–70

    Article  CAS  PubMed  Google Scholar 

  7. Zhang S, Rocourt C, Cheng WH (2010) Selenoproteins and the aging brain. Mech Ageing Dev 131(4):253–260

    Article  CAS  PubMed  Google Scholar 

  8. Burk RF, Hill KE, Motley AK et al (2014) Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J 28(8):3579–3588

    Article  CAS  PubMed  Google Scholar 

  9. Berry MJ, Larsen PR (1992) The role of selenium in thyroid hormone action. Endocr Rev 13(2):207–219

    CAS  PubMed  Google Scholar 

  10. Arthur JR, McKenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133(5 Suppl 1):1457S–1459S

    CAS  PubMed  Google Scholar 

  11. Berr C, Arnaud J, Akbaraly TN (2012) Selenium and cognitive impairment: a brief-review based on results from the EVA study. Biofactors 38(2):139–144

    Article  CAS  PubMed  Google Scholar 

  12. Byrns CN, Pitts MW, Gilman CA, Hashimoto AC, Berry MJ (2014) Mice lacking selenoprotein P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration, and audiogenic seizures. J Biol Chem 289(14):9662–9674

    Article  CAS  PubMed  Google Scholar 

  13. Mehta SL, Kumari S, Mendelev N, Li PA (2012) Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci 13:79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Steinbrenner H, Sies H (2013) Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys 536(2):152–157

    Article  CAS  PubMed  Google Scholar 

  15. Caito SW, Milatovic D, Hill KE et al (2011) Progression of neurodegeneration and morphologic changes in the brains of juvenile mice with selenoprotein P deleted. Brain Res 1398:1–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chen J, Berry MJ (2003) Selenium and selenoproteins in the brain and brain diseases. J Neurochem 86(1):1–12

    Article  CAS  PubMed  Google Scholar 

  17. Naziroglu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32(11):1990–2001

    Article  CAS  PubMed  Google Scholar 

  18. Ozmen I, Naziroglu M, Alici HA et al (2007) Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress. Neurochem Res 32(1):19–25

    Article  PubMed  Google Scholar 

  19. Naziroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34(12):2181–2191

    Article  CAS  PubMed  Google Scholar 

  20. Kutluhan S, Naziroglu M, Celik O, Yilmaz M (2009) Effects of selenium and topiramate on lipid peroxidation and antioxidant vitamin levels in blood of pentylentetrazol-induced epileptic rats. Biol Trace Elem Res 129(1–3):181–189

    Article  CAS  PubMed  Google Scholar 

  21. Behl C, Moosmann B (2002) Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383(3–4):521–536

    CAS  PubMed  Google Scholar 

  22. Loef M, Schrauzer GN, Walach H (2011) Selenium and Alzheimer’s disease: a systematic review. J Alzheimers Dis 26(1):81–104

    CAS  PubMed  Google Scholar 

  23. Longnecker MP, Stram DO, Taylor PR et al (1996) Use of selenium concentration in whole blood, serum, toenails, or urine as a surrogate measure of selenium intake. Epidemiol (Cambridge, Mass) 7(4):384–390

    Article  CAS  Google Scholar 

  24. Ashton K, Hooper L, Harvey LJ et al (2009) Methods of assessment of selenium status in humans: a systematic review. Am J Clin Nutr 89(6):2025s–2039s

    Article  CAS  PubMed  Google Scholar 

  25. Segovia G, Porras A, Del Arco A, Mora F (2001) Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 122(1):1–29

    Article  CAS  PubMed  Google Scholar 

  26. Paine SML, Lowe JS (2011) Approach to the post-mortem investigation of neurodegenerative diseases: from diagnosis to research. Diagn Histopathol 17(5):211–216

    Article  Google Scholar 

  27. Duflou H, Maenhaut W, De Reuck J (1989) Regional distribution of potassium, calcium, and six trace elements in normal human brain. Neurochem Res 14(11):1099–1112

    Article  CAS  PubMed  Google Scholar 

  28. Lanciego JL, Luquin N, Obeso JA (2012) Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2(12):a009621

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ramos P, Santos A, Pinto NR et al (2014) Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 28(1):13–17

    Article  CAS  PubMed  Google Scholar 

  30. Larsen NA, Pakkenberg H, Damsgaard E, Heydorn K (1979) Topographical distribution of arsenic, manganese, and selenium in the normal human brain. J Neurol Sci 42(3):407–416

    Article  CAS  PubMed  Google Scholar 

  31. Hock A, Demmel U, Schicha H, Kasperek K, Feinendegen LE (1975) Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium. Brain 98(1):49–64

    Article  CAS  PubMed  Google Scholar 

  32. Ejima A, Watanabe C, Koyama H, Matsuno K, Satoh H (1996) Determination of selenium in the human brain by graphite furnace atomic absorption spectrometry. Biol Trace Elem Res 54(1):9–21

    Article  CAS  PubMed  Google Scholar 

  33. Behne D, Wolters W (1983) Distribution of selenium and glutathione peroxidase in the rat. J Nutr 113(2):456–461

    CAS  PubMed  Google Scholar 

  34. Kühbacher M, Bartel Jr, Alber D et al (2014) Neurochemical imaging of selenium homeostasis and the selenoproteome in the brain under nutritional deficiency. http://www.laborjournal.de/editorials/ed424/Ms1_v5_web.pdf. Accessed 21st August 2014

  35. Markesbery WR, Ehmann WD, Alauddin M, Hossain TI (1984) Brain trace element concentrations in aging. Neurobiol Aging 5(1):19–28

    Article  CAS  PubMed  Google Scholar 

  36. Nakayama A, Hill KE, Austin LM, Motley AK, Burk RF (2007) All regions of mouse brain are dependent on selenoprotein P for maintenance of selenium. J Nutr 137(3):690–693

    CAS  PubMed  Google Scholar 

  37. Brannan TS, Maker HS, Raes I, Weiss C (1980) Regional distribution of glutathione reductase in the adult rat brain. Brain Res 200(2):474–477

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Zhou Y, Schweizer U et al (2008) Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J Biol Chem 283(4):2427–2438

    Article  CAS  PubMed  Google Scholar 

  39. Hebbrecht G, Maenhaut W, Reuck JD (1999) Brain trace elements and aging. Nucl Instrum Meth B 150(1–4):208–213

    Article  CAS  Google Scholar 

  40. Bartzokis G, Tishler TA, Lu PH et al (2007) Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 28(3):414–423

    Article  CAS  PubMed  Google Scholar 

  41. Xu X, Wang Q, Zhang M (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. NeuroImage 40(1):35–42

    Article  CAS  PubMed  Google Scholar 

  42. Correia H, Ramos P, Santos A et al (2014) A post-mortem study of the anatomical region differences and age-related changes on Ca and Mg levels in the human brain. Microchem J 113:69–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work received financial support from the Universidade do Porto and Santander Totta through the project “TRAIN: Trace elements in human brain: age-related changes and anatomic region specific differences” (PP_IJUP 2011 342). This work also received financial support from the European Union (FEDER funds through COMPETE) and national funds (FCT, Fundação para a Ciência e Tecnologia) through project Pest-C/EQB/LA0006/2013. The authors thank all financing sources.

Conflict of Interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostinho Almeida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, P., Santos, A., Pinto, N.R. et al. Anatomical Regional Differences in Selenium Levels in the Human Brain. Biol Trace Elem Res 163, 89–96 (2015). https://doi.org/10.1007/s12011-014-0160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0160-z

Keywords

Navigation