, Volume 159, Issue 1, pp 208-220
Date: 13 Jan 2009

Circulating IgSF Proteins Inhibit Adhesion of Antibody Targeted Microspheres to Endothelial Inflammatory Ligands

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Proposed methods for detecting circulatory system disease include targeting ultrasound contrast agents to inflammatory markers on vascular endothelial cells. For antibody-based therapies, soluble forms of the targeted adhesion proteins of the immunoglobulin superfamily (IgSF) reduce adhesion yet were left unaccounted in prior reports. Microspheres labeled simply with a maximum level of antibodies can reduce the diagnostic sensitivity by adhering to proteins expressed normally at a low level, while sparsely coated particles may be rendered ineffective by circulating soluble forms of the targeted proteins. A new microdevice technique is applied to simultaneously measure the adhesion profile to a series of IgSF-protein-coated surfaces. In this investigation, we quantify the in vitro binding characteristics of 5-μm microspheres to oriented intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) protein-coated surfaces in the presence of human serum at physiological concentrations. Defined regions of a slide were coated with recombinant chimeric Fc-human ICAM-1 and VCAM-1 in variable ratios but constant total concentration. Monoclonal human anti-ICAM-1 or anti-VCAM-1 antibodies in competition with non-binding mouse anti-rabbit antibodies coat the microsphere surface at a constant surface density with variable yet controlled surface activities. Using multiple slide surface IgSF protein and microsphere antibody concentrations, an adhesion profile was developed for the microspheres with and without IgSF proteins from human serum, which demonstrated that exposure to serum reduced microsphere binding, on average, more than 50% compared to the no-serum condition.. The serum effects were limited to antibodies on the microsphere, since binding inhibition was reversed after rinsing serum from the system and fresh antibody-coated microspheres were introduced. This analysis quantifies the binding effects of soluble IgSF proteins from human serum on antibody-based targeted ultrasound detection and drug delivery methods.