, Volume 468, Issue 10, pp 2789-2796,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 23 Mar 2010

Maggot Excretions Inhibit Biofilm Formation on Biomaterials

Abstract

Background

Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm formation.

Questions/purposes

We studied biofilm formation of Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella oxytoca, Enterococcus faecalis, and Enterobacter cloacae on polyethylene, titanium, and stainless steel. We compared the quantities of biofilm formation between the bacterial species on the various biomaterials and the quantity of biofilm formation after various incubation times. Maggot excretions/secretions were added to existing biofilms to examine their effect.

Methods

Comb-like models of the biomaterials, made to fit in a 96-well microtiter plate, were incubated with bacterial suspension. The formed biofilms were stained in crystal violet, which was eluted in ethanol. The optical density (at 595 nm) of the eluate was determined to quantify biofilm formation. Maggot excretions/secretions were pipetted in different concentrations to (nonstained) 7-day-old biofilms, incubated 24 hours, and finally measured.

Results

The strongest biofilms were formed by S. aureus and S. epidermidis on polyethylene and the weakest on titanium. The highest quantity of biofilm formation was reached within 7 days for both bacteria. The presence of excretions/secretions reduced biofilm formation on all biomaterials. A maximum of 92% of biofilm reduction was measured.

Conclusions

Our observations suggest maggot excretions/secretions decrease biofilm formation and could provide a new treatment for biofilm formation on infected biomaterials.

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.
This work was performed at VU University Medical Center.