Skip to main content
Log in

3D Virtual Pome Fruit Tissue Generation Based on Cell Growth Modeling

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A 3D virtual fruit tissue generator is presented that can distinctly define the microstructural components of a fruit tissue and that can be used to model important physical processes such as gas transport during controlled atmosphere storage. The model is based on the biomechanics of plant cells in tissues. The main merit of this algorithm is that it can account for typical differences in intercellular air space networks and in cell size and shape found between different fruit species and tissues. The cell is considered as a closed thin walled structure, maintained in tension by turgor pressure. The cell walls of adjacent cells are modeled as parallel, linear elastic elements which obey Hooke's law. A 3D Voronoi tessellation is used to generate the initial topology of the cells. Intercellular air spaces of schizogenous origin are generated by separating the Voronoi cells along the edges where three Voronoi cells are in contact; while intercellular air spaces of lysigenous origin are generated by deleting (killing) some of the Voronoi cells randomly. Cell expansion then results from turgor pressure acting on the yielding cell wall material. To find the sequence of positions of each vertex and thus the shape of the tissue with time, a system of differential equations for the positions and velocities of each vertex is established and solved using a Matlab ordinary differential equation solver. Statistical comparison with synchrotron tomography images of fruit tissue is excellent. The virtual tissues can be used to study tissue mechanics and exchange processes of important metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aalto, T., & Juurola, E. (2002). A three-dimensional model of CO2 transport in airspaces and mesophyll cells of a silver birch leaf. Plant, Cell & Environment, 25, 1399–1409.

    Article  Google Scholar 

  • Abera, M. K., Fanta, S. W., Verboven, P., Ho, Q. T., Carmeliet, J., & Nicolai, B. M. (2012). Virtual fruit tissue generation based on cell growth modeling. Journal of Food and Bioprocess Technology. doi:10.1007/s11947-011-0775-4.

    Google Scholar 

  • Alamar, M. C., Vanstreels, E., Oey, M. L., Molto´, E., & Nicolai, B. M. (2008). Micromechanical behaviour of apple tissue in tensile and compression tests: storage conditions and cultivar effect. Journal of Food Engineering, 86, 324–333.

    Article  Google Scholar 

  • Chaplain, M. A. J. (1993). The strain energy function of an ideal plant cell wall. Journal of Theoretical Biology, 163, 77–97.

    Article  Google Scholar 

  • Cloetens, P., Mache, R., Schlenker, M., & Lerbs-Mache, S. (2006). Quantitative phase tomography of Arabidopsis seeds reveals intercellular void network. Proceedings of the National Academy of Sciences of the United States of America, 103, 14626–14630.

    Article  CAS  Google Scholar 

  • Colmer, T. D. (2003). Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant, Cell & Environment, 26, 17–36.

    Article  CAS  Google Scholar 

  • Cybulska, J., Vanstreels, E., Ho, Q. T., Courtin, C. M., Van Craeyveld, V., Nicola, B., Zdunek, A., & Konstankiewicz, K. (2010). Mechanical characteristics of artificial cell walls. Journal of Food Engineering, 96, 287–294.

    Google Scholar 

  • Dintwa, E., Jancsók, P., Mebatsion, H. K., Verlinden, B., Verboven, P., Wang, C. X., Thomas, C. R., Tijskens, E., Ramon, H., & Nicolai, B. (2011). A finite element model for mechanical deformation of single tomato suspension cells. Journal of Food Engineering, 103, 265–272.

    Article  Google Scholar 

  • Drazeta, L., Lang, A., Alistair, J. H., Richard, K. V., & Paula, E. J. (2004). Air volume measurement of ‘Braeburn’ apple fruit. Journal of Experimental Botany, 55, 1061–1069.

    Article  CAS  Google Scholar 

  • Dupuy, L., Mackenzie, J., Rudge, T., & Haseloff, J. (2008). A system for modeling cell–cell interactions during plant morphogenesis. Annals of Botany, 101(8), 1255–1265.

    Article  Google Scholar 

  • Dupuy, L., Mackenzie, J., & Haseloff, J. (2010). Coordination of plant cell division and expansion in a simple morphogenetic system. Proceedings of the National Academy of Sciences of the United States of America, 107(6), 2711–2716.

    Article  CAS  Google Scholar 

  • Fleming, A. J. (2006). The co-ordination of cell division, differentiation and morphogenesis in the shoot apical meristem: a perspective. Journal of Experimental Botany, 57, 25–32.

    Article  CAS  Google Scholar 

  • Franck, C., Lammertyn, J., Ho, Q., Verboven, P., Verlinden, B., & Nicolai, B. (2007). Browning disorders in pear fruit. Postharvest Biology and Technology, 43(1), 1–13.

    Article  CAS  Google Scholar 

  • Harker, F. R., & Ferguson, I. B. (1988). Calcium ion transport across discs of the cortical flesh of apple fruit in relation to fruit development. Physiologia Plantarum, 74, 695–700.

    Article  CAS  Google Scholar 

  • Herremans, E., Verboven, P., Bongaers, E., Estrade, P., Verlinden, B. E., Wevers, M., Hertog, M. L. A. T. M., & Nicolai, B. M. (2013). Characterisation of ‘Braeburn’ browning disorder by means of X-ray micro-CT. Postharvest Biology and Technology, 75, 114–124.

    Article  Google Scholar 

  • Ho, Q., Verlinden, B., Verboven, P., Vandewalle, S., & Nicolai, B. (2006). A permeation–diffusion–reaction model of gas transport in cellular tissue of plant materials. Journal of Experimental Botany, 57(15), 4215–4224.

    Article  CAS  Google Scholar 

  • Ho, Q. T., Verboven, P., Verlinden, B. E., Lammertyn, J., Vandewalle, S., & Nicolai, B. M. (2008). A continuum model for metabolic gas exchange in pear fruit. PLoS Computational Biology, 4(3), e1000023.

    Article  Google Scholar 

  • Ho, Q., Verboven, P., Mebatsion, H., Verlinden, B., Vandewalle, S., & Nicolai, B. (2009). Microscale mechanisms of gas exchange in fruit tissue. The New Phytologist, 182(1), 163–174.

    Article  CAS  Google Scholar 

  • Ho, Q., Verboven, P., Verlinden, B., Schenk, A., Delele, M., Rolletschek, H., Vercammen, J., & Nicolai, B. (2010). Genotype effects on internal gas gradients in apple fruit. Journal of Experimental Botany, 61(10), 2745–2755.

    Article  CAS  Google Scholar 

  • Ho, Q., Verboven, P., Verlinden, B., Herremans, E., Wevers, M., Carmeliet, J., & Nicolai, B. (2011). A 3-D multiscale model for gas exchange in fruit. Plant Physiology, 155(3), 1158–1168.

    Article  CAS  Google Scholar 

  • Justel, A., Pena, D., & Zamar, R. (1997). A multivariant Kolmogorov–Smirnov test of goodness of fit. Statistics and Probability Letters, 35, 251–259.

    Article  Google Scholar 

  • Kuroki, S., Oshita, S., Sotome, I., Kawagoe, Y., & Seo, Y. (2004). Visualization of 3-D network of gas-filled intercellular spaces in cucumber fruit after harvest. Postharvest Biology and Technology, 33, 255–262.

    Article  Google Scholar 

  • Lammertyn, J., Scheerlinck, N., Jancsók, P., Verlinden, B., & Nicolai, B. (2003). A respiration–diffusion model for 'Conference' pears: I. Model development and validation. Postharvest Biology and Technology, 30(1), 29–42.

    Article  Google Scholar 

  • Loodts, J., Tijskens, E., Wei, C., Vanstreels, E., Nicolai, B. M., & Ramon, H. (2006). Micromechanics: simulating the elastic behavior of onion epidermis tissue. Journal of Texture Studies, 37, 16–34.

    Article  Google Scholar 

  • Mebatsion, H. K., Verboven, P., Verlinden, B. E., Ho, Q. T., Nguyen, T. A., & Nicolai, B. M. (2006a). Microscale modelling of fruit tissue using Voronoi tessellations. Computers and Electronics in Agriculture, 52, 36–48.

    Article  Google Scholar 

  • Mebatsion, H. K., Verboven, P., Ho, Q. T., Mendoza, F., Verlinden, B. E., Nguyen, T. A., & Nicolai, B. M. (2006b). Modelling fruit microstructure using novel ellipse essellation algorithm. CMES: Computer Modeling in Engineering & Sciences, 14(1), 1–14.

    Google Scholar 

  • Mebatsion, H., Verboven, P., Jancsók, P., Ho, Q., Verlinden, B., & Nicolai, B. (2008). Modelling 3D fruit tissue microstructure using a novel ellipsoid tessellation algorithm. CMES: Computer Modeling in Engineering & Sciences, 29(3), 137–149.

    Google Scholar 

  • Mebatsion, H., Verboven, P., Melesse, A. E., Billen, J., Ho, Q., & Nicolai, B. (2009). A novel method for 3-D microstructure modelling of pome fruit tissue using synchrotron radiation tomography image. Journal of Food Engineering, 93(2), 141–148.

    Article  Google Scholar 

  • Mendoza, F., Verboven, P., Mebatsion, H. K., Kerckhofs, G., Wevers, M., & Nicolaï, B. (2007) Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography. Planta, 226, 559–570.

    Google Scholar 

  • Oey, M.L., Vanstreels, E., De Baerdemaeker, J., Tijskens, E., Ramon, H., & Hertog, M. L. A. T. M. (2007). Effect of turgor on micromechanical and structural properties of apple tissue: A quantitative analysis. Postharvest biology and technology. doi:10.1016/j.postharvbio.2006.12.015.

  • Parkhurst, D. F., & Mott, K. A. (1990). Intercellular diffusion limits to CO2 uptake in leaves: studies in air and helox. Plant Physiology, 94, 1024–1032.

    Article  CAS  Google Scholar 

  • Pradal, C., Boudon, F., Nouguier, C., Chopard, J., & Godin, C. (2009). PlantGL: a Python-based geometric library for 3D plant modeling at different scales. Graphical Models, 71, 1–21.

    Article  Google Scholar 

  • Prusinkiewicz, P., & Lindenmayer, A. (1990). The algorithmic beauty of plants. New York, USA: Springer-Verlag.

    Book  Google Scholar 

  • Rajapakse, N. C., Banks, N. H., Hewett, E. W., & Cleland, D. J. (1990). Development of oxygen concentration gradients in flesh tissues of bulky plant organs. Journal of the American Society for Horticultural Science, 115, 793–797.

    CAS  Google Scholar 

  • Raven, J. A. (1996). Into the voids: the distribution, function, development and maintenance of gas spaces in plants. Annals of Botany (London), 78, 137–142.

    Article  Google Scholar 

  • Rudge, T., & Haseloff, J. (2005). A computational model of cellular morphogenesis in plants. Lecture Notes in Computer Science: Advances in Artificial Life, 3630, 78–87.

    Article  Google Scholar 

  • Saquet, A. A., Streif, J., & Bangerth, F. (2000). Changes in ATP, ADP and pyridine nucleotide levels related to the incidence of physiological disorders in ‘Conference’ pears and ‘Jonagold’ apples during controlled atmosphere storage. The Journal of Horticultural Science and Biotechnology, 75, 243–249.

    CAS  Google Scholar 

  • Szymanowska-Pułka, J., & Nakielski, J. (2010). The tensor-based model for growth and cell divisions of the root apex: II. Lateral root formation. Planta, 232, 1207–1218.

    Article  Google Scholar 

  • Tao, S. T., Khanizadeh, S., & Zhang, S. L. (2009). Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species. Plant Science, 176, 413–419.

    Article  CAS  Google Scholar 

  • Vanstreels, E., Alamar, M. C., Verlinden, B. E., Enninghorst, A., Loodts, J. K. A., Tijskens, E., Ramon, H., & Nicolai, B. M. (2005). Micromechanical behaviour of onion epidermal tissue. Postharvest Biology and Technology, 37, 163–173.

    Article  Google Scholar 

  • Verboven, P., Kerckhofs, G., Mebatsion, H. K., Ho, Q. T., Temst, K., Wevers, M., Cloetens, P., & Nicolai, B. M. (2008). 3-D gas exchange pathways in pome fruit characterised by synchrotron X-ray computed tomography. Plant Physiology, 47, 518–527.

    Article  Google Scholar 

  • Wu, N., & Pitts, M. J. (1999). Development and validation of a finite element model of an apple fruit cell. Postharvest Biology and Technology, 16, 1–8.

    Article  Google Scholar 

  • Yamaki, S., & Ino, M. (1992). Alteration of cellular compartmentation and membrane permeability to sugars in immature and mature apple fruit. Journal of the american Society for Horticultural Science, 117, 951–954.

    Google Scholar 

Download references

Acknowledgements

Financial support by the Flanders Fund for Scientific Research (project FWO G.0603.08), K.U. Leuven (project OT 08/023) and the EC (project InsideFood FP7-226783) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT scholarship SB/0991469) is gratefully acknowledged. Quang Tri Ho and Thijs Defraeye are postdoctoral fellows of the Flanders Fund for Scientific Research (FWO Vlaanderen). Synchrotron X-ray tomography was performed at the ESRF (Grenoble, France) by means of a beam time grant (experiment MA222). The authors also acknowledge Dr. Peter Cloetens for technical assistance during the synchrotron experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart M. Nicolai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abera, M.K., Verboven, P., Herremans, E. et al. 3D Virtual Pome Fruit Tissue Generation Based on Cell Growth Modeling. Food Bioprocess Technol 7, 542–555 (2014). https://doi.org/10.1007/s11947-013-1127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1127-3

Keywords

Navigation