Skip to main content

Advertisement

Log in

Nanoemulsions for Food Applications: Development and Characterization

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

An Erratum to this article was published on 02 April 2013

Abstract

The application of nanotechnology to food, medical and pharmaceutical industries has received great attention from the scientific community. Driven by the increasing consumers’ demand for healthier and safer food products and the need for edible systems able to encapsulate, protect, and release functional compounds, researchers are currently focusing their efforts in nanotechnology to address issues relevant to food and nutrition. Nanoemulsion technology is particularly suited for the fabrication of encapsulating systems for functional compounds as it prevents their degradation and improves their bioavailability. This review focuses on nanoemulsions and provides an overview of the production methods, materials used (solvents, emulsifiers, and functional ingredients) and of the current analytical techniques that can be used for the identification and characterization of nanoemulsions. Finally, nanotechnological applications in foods currently marketed are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current Opinion in Colloid & Interface Science, 14(1), 3–15.

    Article  CAS  Google Scholar 

  • Akoh, C. C., & Min, D. B. (2002). Food lipids: Chemistry, nutrition, and biotechnology (2nd ed.). New York: Marcel Dekker.

    Book  Google Scholar 

  • Anton, N., Gayet, P., Benoit, J.-P., & Saulnier, P. (2007). Nano-emulsions and nanocapsules by the PIT method: An investigation on the role of the temperature cycling on the emulsion phase inversion. International Journal of Pharmaceutics, 344(1–2), 44–52.

    Article  CAS  Google Scholar 

  • Anton, N., Benoit, J.-P., & Saulnier, P. (2008). Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of Controlled Release, 128(3), 185–199.

    Article  CAS  Google Scholar 

  • AquaNova (2011). Available at: http://www.aquanova.de/media/public/pdf_produkte unkosher/NovaSOL_beverage.pdf. Accessed 13 April 2011.

  • Araújo, F. A., Kelmann, R. G., Araújo, B. V., Finatto, R. B., Teixeira, H. F., & Koester, L. S. (2011). Development and characterization of parenteral nanoemulsions containing thalidomide. European Journal of Pharmaceutical Sciences, 42(3), 238–245.

    Article  Google Scholar 

  • ASTM (1985) Zeta potential of colloids in water and waste water. American Society for Testing and Materials, D 4187–4182.

  • Azároff, L. V., Kaplow, R., Kato, N., Weiss, R. J., Wilson, A. J. C., & Young, R. A. (1974). Crystal physics, diffraction, theoretical and general crystallography. New York: McGraw-Hill.

    Google Scholar 

  • Bouchemal, K., Briançon, S., Perrier, E., & Fessi, H. (2004). Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. International Journal of Pharmaceutics, 280(1–2), 241–251.

    Article  CAS  Google Scholar 

  • Burapapadh, K., Kumpugdee-Vollrath, M., Chantasart, D., & Sriamornsak, P. (2010). Fabrication of pectin-based nanoemulsions loaded with itraconazole for pharmaceutical application. Carbohydrate Polymers, 82(2), 384–393.

    Article  CAS  Google Scholar 

  • Casadei, M. A., Cerreto, F., Cesa, S., Giannuzzo, M., Feeney, M., Marianecci, C., et al. (2006). Solid lipid nanoparticles incorporated in dextran hydrogels: A new drug delivery system for oral formulations. International Journal of Pharmaceutics, 325(1–2), 140–146.

    Article  CAS  Google Scholar 

  • Center for Biological Nanotechnology (2001). Available at: http://www.vitamincity.com/umichnanobio.htm. Accessed 12 April 2011.

  • Chaix, C., Pacard, E., Elaïssari, A., Hilaire, J.-F., & Pichot, C. (2003). Surface functionalization of oil-in-water nanoemulsion with a reactive copolymer: Colloidal characterization and peptide immobilization. Colloids and Surfaces. B, Biointerfaces, 29(1), 39–52.

    Article  CAS  Google Scholar 

  • Chau, C.-F., Wu, S.-H., & Yen, G.-C. (2007). The development of regulations for food nanotechnology. Trends in Food Science & Technology, 18(5), 269–280.

    Article  CAS  Google Scholar 

  • Chen, L., Remondetto, G. E., & Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology, 17(5), 272–283.

    Article  CAS  Google Scholar 

  • Cheong, J. N., Tan, C. P., Man, Y. B. C., & Misran, M. (2008). [alpha]-Tocopherol nanodispersions: Preparation, characterization and stability evaluation. Journal of Food Engineering, 89(2), 204–209.

    Article  CAS  Google Scholar 

  • Chu, B.-S., Ichikawa, S., Kanafusa, S., & Nakajima, M. (2007). Preparation of protein-stabilized β-carotene nanodispersions by emulsification–evaporation method. Journal of the American Oil Chemists’ Society, 84(11), 1053–1062.

    Article  CAS  Google Scholar 

  • Connolly JR (2007). Introduction to X-Ray Powder Diffraction., Available at: http://epswww.unm.edu/xrd/xrdclass/01-XRD-Intro.pdf. Accessed 14 January 2011.

  • Date, A. A., Desai, N., Dixit, R., & Nagarsenker, M. (2010). Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine, 5(10), 1595–1616.

    Article  CAS  Google Scholar 

  • de Araújo, S. C., de Mattos, A. C. A., Teixeira, H. F., Coelho, P. M. Z., Nelson, D. L., & de Oliveira, M. C. (2007). Improvement of in vitro efficacy of a novel schistosomicidal drug by incorporation into nanoemulsions. International Journal of Pharmaceutics, 337(1–2), 307–315.

    Article  Google Scholar 

  • Dulog, L., & Schauer, T. (1996). Field flow fractionation for particle size determination. Progress in Organic Coatings, 28(1), 25–31.

    Article  CAS  Google Scholar 

  • Edwards, K. A., & Baeumner, A. J. (2006). Analysis of liposomes. Talanta, 68(5), 1432–1441.

    Article  CAS  Google Scholar 

  • Ee, S. L., Duan, X., Liew, J., & Nguyen, Q. D. (2008). Droplet size and stability of nano-emulsions produced by the temperature phase inversion method. Chemical Engineering Journal, 140(1–3), 626–631.

    Article  CAS  Google Scholar 

  • Fasolo, D., Schwingel, L., Holzschuh, M., Bassani, V., & Teixeira, H. (2007). Validation of an isocratic LC method for determination of quercetin and methylquercetin in topical nanoemulsions. Journal of Pharmaceutical and Biomedical Analysis, 44(5), 1174–1177.

    Article  CAS  Google Scholar 

  • Freitas, S., Merkle, H. P., & Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: Reviewing the state of the art of microsphere preparation process technology. Journal of Controlled Release, 102(2), 313–332.

    Article  CAS  Google Scholar 

  • Gao, F., Zhang, Z., Bu, H., Huang, Y., Gao, Z., Shen, J., et al. (2011). Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: Performance and mechanism. Journal of Controlled Release, 149(2), 168–174.

    Article  CAS  Google Scholar 

  • Garti, N., Spernath, A., Aserin, A., & Lutz, R. (2005). Nano-sized self-assemblies of nonionic surfactants as solubilization reservoirs and microreactors for food systems. Soft Matter, 1(3), 206–218.

    Article  CAS  Google Scholar 

  • Glatter O & Kratky O, (1982). Small Angle X-ray Scattering. Academic Press.

  • Grigoriev, D. O., & Miller, R. (2009). Mono- and multilayer covered drops as carriers. Current Opinion in Colloid & Interface Science, 14(1), 48–59.

    Article  CAS  Google Scholar 

  • Gruère G, Narrod C & Abbott L (2011). Agricultural, Food, and Water Nanotechnologies for the Poor, Available at: http://www.ifpri.org/sites/default/files/publications/ifpridp01064.pdf. Accessed

  • Gutiérrez, J. M., González, C., Maestro, A., Solè, I., Pey, C. M., & Nolla, J. (2008). Nano-emulsions: New applications and optimization of their preparation. Current Opinion in Colloid & Interface Science, 13(4), 245–251.

    Article  Google Scholar 

  • Halliday J (2007). EFSA opens the floor on nanotechnology, Available at: http://www.foodnavigator.com/Financial-Industry/EFSA-opens-the-floor-on-nanotechnology. Accessed 13 April 2011.

  • Horn, D., & Rieger, J. (2001). Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angewandte Chemie, International Edition, 40(23), 4330–4361.

    Article  CAS  Google Scholar 

  • Howe, A. M., & Pitt, A. R. (2008). Rheology and stability of oil-in-water nanoemulsions stabilised by anionic surfactant and gelatin 2) addition of homologous series of sugar-based co-surfactants. Advances in Colloid and Interface Science, 144(1–2), 30–37.

    Article  CAS  Google Scholar 

  • Huang, Q., Yu, H., & Ru, Q. (2010). Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of Food Science, 75(1), R50–R57.

    Article  CAS  Google Scholar 

  • Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, C., Garcia, M. J., Azemar, N., et al. (2001). Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir, 18(1), 26–30.

    Article  Google Scholar 

  • Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, J. C., Feng, J., Garcia-Celma, M. J., et al. (2004). Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir, 20(16), 6594–6598.

    Article  CAS  Google Scholar 

  • Izquierdo, P., Feng, J., Esquena, J., Tadros, T. F., Dederen, J. C., Garcia, M. J., et al. (2005). The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. Journal of Colloid and Interface Science, 285(1), 388–394.

    Article  CAS  Google Scholar 

  • Jafari, S. M., He, Y., & Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82(4), 478–488.

    Article  Google Scholar 

  • Jenning, V., Mäder, K., & Gohla, S. H. (2000). Solid lipid nanoparticles (SLN(TM)) based on binary mixtures of liquid and solid lipids: a 1H-NMR study. International Journal of Pharmaceutics, 205(1–2), 15–21.

    Article  CAS  Google Scholar 

  • Jenning, V., Thünemann, A. F., & Gohla, S. H. (2000). Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. International Journal of Pharmaceutics, 199(2), 167–177.

    Article  CAS  Google Scholar 

  • Jiahui, H., Johnston, K. P., & Williams Iii, R. O. (2004). Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Development and Industrial Pharmacy, 30(3), 233–245.

    Article  Google Scholar 

  • Jores, K., Mehnert, W., Drechsler, M., Bunjes, H., Johann, C., & Mäder, K. (2004). Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. Journal of Controlled Release, 95(2), 217–227.

    Article  CAS  Google Scholar 

  • Katagi, S., Kimura, Y., & Adachi, S. (2007). Continuous preparation of O/W nano-emulsion by the treatment of a coarse emulsion under subcritical water conditions. LWT - Food Science and Technology, 40(8), 1376–1380.

    Article  CAS  Google Scholar 

  • Kelmann, R. G., Kuminek, G., Teixeira, H. F., & Koester, L. S. (2007). Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. International Journal of Pharmaceutics, 342(1–2), 231–239.

    Article  CAS  Google Scholar 

  • Kesisoglou, F., Panmai, S., & Wu, Y. H. (2007). Application of nanoparticles in oral delivery of immediate release formulations. Current Nanoscience, 3, 183–190.

    Article  CAS  Google Scholar 

  • Lee, S. J., & McClements, D. J. (2010). Fabrication of protein-stabilized nanoemulsions using a combined homogenization and amphiphilic solvent dissolution/evaporation approach. Food Hydrocolloids, 24(6–7), 560–569.

    Article  CAS  Google Scholar 

  • Leong, T. S. H., Wooster, T. J., Kentish, S. E., & Ashokkumar, M. (2009). Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 16(6), 721–727.

    Article  CAS  Google Scholar 

  • Liu, W., Sun, D., Li, C., Liu, Q., & Xu, J. (2006). Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of Colloid and Interface Science, 303(2), 557–563.

    Article  CAS  Google Scholar 

  • Luykx, D. M. A. M., Goerdayal, S. S., Dingemanse, P. J., Jiskoot, W., & Jongen, P. M. J. M. (2005). HPLC and tandem detection to monitor conformational properties of biopharmaceuticals. Journal of Chromatography B, 821(1), 45–52.

    Article  CAS  Google Scholar 

  • Luykx, D. M. A. M., Peters, R. J. B., van Ruth, S. M., & Bouwmeester, H. (2008). A review of analytical methods for the identification and characterization of nano delivery systems in food. Journal of Agricultural and Food Chemistry, 56(18), 8231–8247.

    Article  CAS  Google Scholar 

  • Maa, Y.-F., & Hsu, C. C. (1999). Performance of sonication and microfluidization for liquid–liquid emulsification. Pharmaceutical Development and Technology, 4(2), 233–240.

    Article  CAS  Google Scholar 

  • Martins P, Dulley R, Ramos S, Barbosa M, Assumpção R, Junior S & Lacerda A (2007). Nanotecnologias na indústria de alimentos., Available at: http://www.pucsp.br/eitt/downloads/vi_ciclo_paulomartins_marisabarbosa_nano_puc.pdf. Accessed 14 April 2011.

  • McClements, D. J. (2000). Isothermal titration calorimetry study of pectin–ionic surfactant interactions. Journal of Agricultural and Food Chemistry, 48(11), 5604–5611.

    Article  CAS  Google Scholar 

  • McClements, D. (2005). Food emulsions: Principles, practice, and techniques (2nd ed.). Boca Raton: CRC.

    Google Scholar 

  • McClements, D. J., Decker, E. A., & Weiss, J. (2007). Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Science, 72(8), R109–R124.

    Article  CAS  Google Scholar 

  • McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Reviews in Food Science and Nutrition, 49(6), 577–606.

    Article  CAS  Google Scholar 

  • Mills, I., Cvitas, T., Homann, K., Kallay, N., & Kuchitsu, K. (1993). IUPAC quantities, units and symbols in physical chemistry (2nd ed.). Oxford: Blackwell.

    Google Scholar 

  • Möller, M., Eberle, U., Hermann, A., Moch, K., & Stratmann, B. (2009). Nanotechnology in the food sector. Zürich: TA-SWISS.

    Google Scholar 

  • Morales, D., Gutiérrez, J. M., García-Celma, M. J., & Solans, Y. C. (2003). A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir, 19(18), 7196–7200.

    Article  CAS  Google Scholar 

  • Moraru, C. I., Panchapakesan, C. P., Huang, Q., Takhistov, P., Liu, S., & Kokini, J. L. (2003). Nanotechnology, a new frontier in food science. Food Technology, 57(12), 24–29.

    Google Scholar 

  • Mulik, R. S., Mönkkönen, J., Juvonen, R. O., Mahadik, K. R., & Paradkar, A. R. (2010). Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis. International Journal of Pharmaceutics, 398(1–2), 190–203.

    Article  CAS  Google Scholar 

  • Neethirajan, S., & Jayas, D. (2011). Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology, 4(1), 39–47.

    Article  CAS  Google Scholar 

  • Nicolet T (2001). Introduction to fourier transform infrared spectrometry., Available at: http://mmrc.caltech.edu/FTIR/FTIRintro.pdf. Accessed 11 January 2011.

  • NutraLease (2011a). Available at: http://www.nutralease.com/Nutra/Templates/showpage.asp?DBID=1&LNGID=1&TMID=84&FID=767. Accessed 13 April 2011.

  • NutraLease (2011b). Available at: http://www.nutralease.com/Nutra/Templates/showpage.asp?DBID=1&LNGID=1&TMID=84&FID=769. Accessed 13 April 2011.

  • NutraLease (2011c). Available at: http://www.nutralease.com/Nutra/Templates/showpage.asp?DBID=1&LNGID=1&TMID=84&FID=768. Accessed 13 April 2011.

  • Pan, X., Yao, P., & Jiang, M. (2007). Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran and [beta]-carotene. Journal of Colloid and Interface Science, 315(2), 456–463.

    Article  CAS  Google Scholar 

  • Porras, M., Solans, C., González, C., & Gutiérrez, J. M. (2008). Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324(1–3), 181–188.

    Article  CAS  Google Scholar 

  • Preetz, C., Hauser, A., Hause, G., Kramer, A., & Mäder, K. (2010). Application of atomic force microscopy and ultrasonic resonator technology on nanoscale: Distinction of nanoemulsions from nanocapsules. European Journal of Pharmaceutical Sciences, 39(1–3), 141–151.

    Article  CAS  Google Scholar 

  • Quintanilla-Carvajal, M., Camacho-Díaz, B., Meraz-Torres, L., Chanona-Pérez, J., Alamilla-Beltrán, L., Jimenéz-Aparicio, A., et al. (2010). Nanoencapsulation: A new trend in food engineering processing. Food Engineering Reviews, 2(1), 39–50.

    Article  Google Scholar 

  • Rao, J., & McClements, D. J. (2010). Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. Journal of Agricultural and Food Chemistry, 58(11), 7059–7066.

    Article  CAS  Google Scholar 

  • Reimer, L. (2000). Scanning electron microscopy: physics of image formation and microanalysis, second edition. Measurement Science and Technology, 11(12), 1826.

    Article  Google Scholar 

  • Relkin, P., Yung, J.-M., Kalnin, D., & Ollivon, M. (2008). Structural behaviour of lipid droplets in protein-stabilized nano-emulsions and stability of α-tocopherol. Food Biophysics, 3(2), 163–168.

    Article  Google Scholar 

  • Ribeiro, H. S., Chu, B.-S., Ichikawa, S., & Nakajima, M. (2008). Preparation of nanodispersions containing [beta]-carotene by solvent displacement method. Food Hydrocolloids, 22(1), 12–17.

    Article  CAS  Google Scholar 

  • Robinson D & Morrison M (2009). Report on nanotechnology in agrifood, Available at: http://www.observatorynano.eu/project/filesystem/files/FullReportNanotechnologyinAgrifoodMay2009.pdf. Accessed 13 April 2011.

  • Roco, M. C., & Bainbridge, W. S. (2001). Societal Implications of nanoscience nanotechnology (pp. 3–4). Boston: Kluwer.

    Book  Google Scholar 

  • Rouessac, F., & Rouessac, A. (2007). Chemical analysis: Modern instrumentation methods and techniques (2nd ed.). France: Wiley.

    Google Scholar 

  • Ruozi, B., Tosi, G., Forni, F., Fresta, M., & Vandelli, M. A. (2005). Atomic force microscopy and photon correlation spectroscopy: Two techniques for rapid characterization of liposomes. European Journal of Pharmaceutical Sciences, 25(1), 81–89.

    Article  CAS  Google Scholar 

  • Sadtler, V., Rondon-Gonzalez, M., Acrement, A., Choplin, L., & Marie, E. (2010). PEO-covered nanoparticles by emulsion inversion point (eip) method. Macromolecular Rapid Communications, 31(11), 998–1002.

    Article  CAS  Google Scholar 

  • Sadurní, N., Solans, C., Azemar, N., & García-Celma, M. J. (2005). Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. European Journal of Pharmaceutical Sciences, 26(5), 438–445.

    Article  Google Scholar 

  • Salmah, H., Ismail, H., & Bakar, A. A. (2008). The effects of dynamic vulcanization and compatibilizer on properties of paper sludge-filled polypropylene/ethylene propylene diene terpolymer composites. Journal of Applied Polymer Science, 107(4), 2266–2273.

    Article  CAS  Google Scholar 

  • Sanguansri, P., & Augustin, M. A. (2006). Nanoscale materials development—a food industry perspective. Trends in Food Science & Technology, 17(10), 547–556.

    Article  CAS  Google Scholar 

  • Shefer, A., & Shefer, S. (2003). Novel encapsulation system provides controlled release of ingredients. Food Technology, 57(11).

  • Shinoda, K., & Saito, H. (1968). The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant. Journal of Colloid and Interface Science, 26(1), 70–74.

    Article  CAS  Google Scholar 

  • Shinoda, K., & Saito, H. (1969). The stability of o/w type emulsions as a function of temperature and the hlb of emulsifiers: the emulsification by pit-method. Journal of Colloid and Interface Science, 30(1), 258–263.

    Article  CAS  Google Scholar 

  • Silva, H. D., Cerqueira, M. A., Souza, B. W. S., Ribeiro, C., Avides, M. C., Quintas, M. A. C., et al. (2011). Nanoemulsions of [beta]-carotene using a high-energy emulsification-evaporation technique. Journal of Food Engineering, 102(2), 130–135.

    Article  CAS  Google Scholar 

  • Simunkova, H., Pessenda-Garcia, P., Wosik, J., Angerer, P., Kronberger, H., & Nauer, G. E. (2009). The fundamentals of nano- and submicro-scaled ceramic particles incorporation into electrodeposited nickel layers: Zeta potential measurements. Surface and Coatings Technology, 203(13), 1806–1814.

    Article  CAS  Google Scholar 

  • Spernath, A., & Aserin, A. (2006). Microemulsions as carriers for drugs and nutraceuticals. Advances in Colloid and Interface Science, 128–130, 47–64.

    Article  Google Scholar 

  • Tadros, T., Izquierdo, P., Esquena, J., & Solans, C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108–109, 303–318.

    Article  Google Scholar 

  • Tan, C. P., & Nakajima, M. (2005a). [beta]-Carotene nanodispersions: preparation, characterization and stability evaluation. Food Chemistry, 92(4), 661–671.

    Article  CAS  Google Scholar 

  • Tan, C. P., & Nakajima, M. (2005b). Effect of polyglycerol esters of fatty acids on physicochemical properties and stability of β-carotene nanodispersions prepared by emulsification/evaporation method. Journal of the Science of Food and Agriculture, 85(1), 121–126.

    Article  CAS  Google Scholar 

  • Thanasukarn, P., Pongsawatmanit, R., & McClements, D. J. (2004). Influence of emulsifier type on freeze-thaw stability of hydrogenated palm oil-in-water emulsions. Food Hydrocolloids, 18(6), 1033–1043.

    Article  CAS  Google Scholar 

  • The Commission Of The Eureopean Communities (1995). Commission Directive 95/45/EC, Available at: http://ec.europa.eu/food/fs/sfp/addit_flavor/flav13_en.pdf. Accessed 19 May 2011.

  • The good scents company Available at: http://www.thegoodscentscompany.com/data/rw1287041.html. Accessed 18 May 2011.

  • Ubbink, J., & Krüger, J. (2006). Physical approaches for the delivery of active ingredients in foods. Trends in Food Science & Technology, 17(5), 244–254.

    Article  CAS  Google Scholar 

  • Unilever (2011). Available at: http://www.unilever.com/innovation/productinnovations/coolicecreaminnovations/?WT.LHNAV=Cool_ice_cream_innovations. Accessed 13 April 2011.

  • Usón, N., Garcia, M. J., & Solans, C. (2004). Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 250(1–3), 415–421.

    Article  Google Scholar 

  • Velikov, K. P., & Pelan, E. (2008). Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter, 4(10), 1964–1980.

    Article  CAS  Google Scholar 

  • Velinova, M. J., Staffhorst, R. W. H. M., Mulder, W. J. M., Dries, A. S., Jansen, B. A. J., de Kruijff, B., et al. (2004). Preparation and stability of lipid-coated nanocapsules of cisplatin: Anionic phospholipid specificity. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1663(1–2), 135–142.

    Article  CAS  Google Scholar 

  • Venturini, C. G., Jäger, E., Oliveira, C. P., Bernardi, A., Battastini, A. M. O., Guterres, S. S., et al. (2011). Formulation of lipid core nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375(1–3), 200–208.

    Article  CAS  Google Scholar 

  • Walstra, P. (1993). Principles of emulsion formation. Chemical Engineering Science, 48(2), 333–349.

    Article  CAS  Google Scholar 

  • Wang, Z. L. (2000). Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. The Journal of Physical Chemistry. B, 104(6), 1153–1175.

    Article  CAS  Google Scholar 

  • Weiss, J., Decker, E., McClements, D., Kristbergsson, K., Helgason, T., & Awad, T. (2008). Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophysics, 3(2), 146–154.

    Article  Google Scholar 

  • Wissing, S. A., Kayser, O., & Müller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 56(9), 1257–1272.

    Article  CAS  Google Scholar 

  • Wooster, T. J., Golding, M., & Sanguansri, P. (2008). Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir, 24(22), 12758–12765.

    Article  CAS  Google Scholar 

  • Wulff-Pérez, M., Torcello-Gómez, A., Gálvez-Ruíz, M. J., & Martín-Rodríguez, A. (2009). Stability of emulsions for parenteral feeding: Preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloids, 23(4), 1096–1102.

    Article  Google Scholar 

  • Yin, L.-J., Chu, B.-S., Kobayashi, I., & Nakajima, M. (2009). Performance of selected emulsifiers and their combinations in the preparation of [beta]-carotene nanodispersions. Food Hydrocolloids, 23(6), 1617–1622.

    Article  CAS  Google Scholar 

  • Yuan, Y., Gao, Y., Mao, L., & Zhao, J. (2008). Optimisation of conditions for the preparation of [beta]-carotene nanoemulsions using response surface methodology. Food Chemistry, 107(3), 1300–1306.

    Article  CAS  Google Scholar 

  • Yuan, Y., Gao, Y., Zhao, J., & Mao, L. (2008). Characterization and stability evaluation of [beta]-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International, 41(1), 61–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

M.A. Cerqueira (SFRH/BPD/72753/2010) is recipient of a fellowship from the Fundação para a Ciência e Tecnologia (FCT, Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António A. Vicente.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s11947-013-1094-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, H.D., Cerqueira, M.Â. & Vicente, A.A. Nanoemulsions for Food Applications: Development and Characterization. Food Bioprocess Technol 5, 854–867 (2012). https://doi.org/10.1007/s11947-011-0683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0683-7

Keywords

Navigation