Skip to main content

Advertisement

Log in

The Protective Arms of the Renin-Angiontensin System in Stroke

  • Hypertension and the Kidney (R Carey, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

It is quite well established that activation of the so-called protective arms of the renin-angiotensin system (RAS), involving both AT2 and Mas receptors, provides a counter-regulatory role to AT1 receptor overactivity that may drive pathological changes in the cardiovascular system. In this brief review, we will focus on recent evidence that identifies at least three different pathways that may be effective in the setting of stroke and may be complementary with AT1 receptor blockade. Such mechanisms include AT2 receptor stimulation, Mas receptor stimulation and insulin-regulated aminopeptidase blockade. This report highlights recent data demonstrating striking neuroprotective effects in preclinical models of stroke targeting each of these pathways, which may pave the way for translational opportunities in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371:1612–23.

    Article  CAS  PubMed  Google Scholar 

  2. Sutherland BA, Minnerup J, Balami JS, Arba F, Buchan AM, et al. Neuroprotection for ischaemic stroke: translation from the bench to the bedside. Int J Stroke. 2012;7:407–18.

    Article  PubMed  Google Scholar 

  3. Ferreira AJ, Santos RA, Bradford CN, Mecca AP, Sumners C, et al. Therapeutic implications of the vasoprotective axis of the renin-angiotensin system in cardiovascular diseases. Hypertension. 2010;55:207–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86:747–803.

    Article  CAS  PubMed  Google Scholar 

  5. Dai W, Funk A, Herdegen T, Unger T, Culman J. Blockade of central angiotensin AT1 receptors improves neurological outcome and reduces expression of AP-1 transcription factors after focal brain ischemia in rats. Stroke. 1999;20:2391–9.

  6. Groth W, Blume A, Golhlke P, Unger T, Culman J. Chronic pretreatment with candersartan improves recovery from focal cerebral ischemia in rats. J Hypertens. 2003;21:2175–82.

    Article  CAS  PubMed  Google Scholar 

  7. Ito T, Yamakawa H, Bregonzio C, Terron J, Falcon-Neri A, et al. Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 receptor antagonist. Stroke. 2002;33:2297–303.

  8. Li J, Culman J, Hortnagl H, Zhao Y, Gerova N, et al. Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal Injury. FASEB J. 2005;19:617–9.

  9. Lu Q, Zhu YZ. Wong PTH Neuroprotective effect of candesartan against cerebral ischemia in spontaneously hypertensive rats. Neuroreport. 2005;16:1963–7.

    Article  CAS  PubMed  Google Scholar 

  10. Mecca AP, O’Connor TE, Katovich MJ, Sumners C. Candersartan pretreatment is cerebroprotective in a rat model of endothelin-1-induced middle cerebral artery occlusion. Exp Physiol. 2009;94:937–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nishimura Y, Ito T, Saavedra J. Angiotensin II AT1 blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke. 2000;31:2478–86.

  12. Walther T, Olah L, Harms C, Maul B, Bader M, et al. Ischemic injury in experimental stroke depends on angiotensin II. FASEB J. 2002;16:169–76.

    Article  CAS  PubMed  Google Scholar 

  13. Brdon J, Kaiser S, Hagemann F, Zhao Y, Culman J, et al. Comparison between early and delayed systemic treatment with candesartan of rats after ischemic stroke. J Hypertens. 2007;25:187–96.

    Article  CAS  PubMed  Google Scholar 

  14. Engelhorn T, Goerike S, Doerfler A, Okorn C, Forsting M, et al. The angiotensin II type 1-receptor blocker candesartan increases cerebral blood flow, reduces infarct size, and improves neurological outcome after transient cerebral ischemia in rats. J Cereb Blood Flow Metab. 2004;24:467–74.

    Article  PubMed  Google Scholar 

  15. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, et al. Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003.

    Article  CAS  PubMed  Google Scholar 

  16. Schrader J, Luders S, Kulischewski A. Morbidity and mortality after stroke eprosartan compared with nitrendipine for secondary prevention (MOSES) trial. Stroke. 2005;36:1218–24.

    Article  CAS  PubMed  Google Scholar 

  17. Phillips MI, Sumners C. Angiotensin II in central nervous system physiology. Regul Pept. 1998;78:1–11.

    Article  CAS  PubMed  Google Scholar 

  18. Achard J, Fournier A, Mazouz H, Caride V, Penar P, et al. Protection against ischemia: a physiological function of the renin-angiotensin system. Biochem Pharmacol. 2001;62:261–71.

    Article  CAS  PubMed  Google Scholar 

  19. Saavedra JM, Benicky J, Zhou J. Mechanisms of the anti-ischemic effect of angiotensin II AT1 receptor antagonist in the brain. Cell Mole Neurobiol. 2006;26:1099–111.

  20. Thone-Reineke C, Zimmermann M, Neumann C, Krikov M, Gerova N, et al. Are angiotensin receptor blockers neuroprotective. Curr Hypertens Rep. 2004;6:257–66.

    Article  PubMed  Google Scholar 

  21. Widdop R, Jones E, Hannan R, Gaspari T. Angiotensin AT2 receptors: cardiovascular hope or hype? B J Pharmacol. 2003;140:809–24.

  22. Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE. Expression of AT2 receptors in the developing rat fetus. J Clin Invest. 1991;88:921–33.

  23. Yu L, Zheng M, Wang W, Rozanski GJ, Zucker IH. Developmental changes in AT1 and AT2 receptor-protein expression in rats. J Renin Angiotensin Aldosterone Syst. 2010;11:214–21.

  24. Chao J, Yang L, Buch S, Gao L. Angiotensin II increased neuronal stem cell proliferation: role of AT2R. PLoS One. 2013;8:63488.

  25. Luo CX, Jin X, Cao CC, Zhu MM, Wang B, et al. Bidirectional regulation of neurogenesis by neuronal nitric oxide synthase derived from neurons and neural stem cells. Stem Cells. 2010;28:2041–52.

    Article  CAS  PubMed  Google Scholar 

  26. Aimone JB, Wiles J, Gage FH. Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci. 2006;9:723–7.

    Article  CAS  PubMed  Google Scholar 

  27. Kempermann G, Wiskott L, Gage FH. Functional significance of adult neurogenesis. Curr Opin Neurobiol. 2004;14:186–91.

    Article  CAS  PubMed  Google Scholar 

  28. Maul B, von Bohlen und Halbach O, Becker A, Sterner-Kock A, Voigt JP, et al. Impaired spatial memory and altered dendritic spine morphology in angiotensin II type 2 receptor-deficient mice. J Mol Med. 2008;86:563–71.

    Article  CAS  PubMed  Google Scholar 

  29. Reinecke K, Lucius R, Reinecke A, Rickert U, Herdengen T, et al. Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: Role of the AT2 receptor and the transcription factor NF-kB. FASEB J. 2003;17:2094–6.

  30. Lucius R, Gallinat S, Rosenstiel P, Unger T, Sievers J. The angiotensin II type 2 receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med. 1998;188:661–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Namsolleck P, Boato F, Schwengel K, Paulis L, Matho KS, et al. AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression. Neurobiol Dis. 2013;51:177–91. First direct evidence that AT 2 R stimulation can evoke the release of neurotrophic factors such as BDNF.

  32. Namsolleck P, Recarti C, Foulquier S, Steckelings UM, Unger T. AT2 receptor and tissue injury: therapeutic implications. Curr Hypertens Rep. 2014;16:416–26.

  33. Krikov M, Thone-Reineke C, Muller S, Villringer A, Unger T. Candesartan but not ramipril pretreatment improves outcome after stroke and stimulates neurotrophin BNDF/TrkB system in rats. J Hypertens. 2008;26:544–52.

    Article  CAS  PubMed  Google Scholar 

  34. Kishi T, Hirooka Y, Sunagawa K. Telmisartan protects against cognitive decline via up-regulation of brain-derived neurotrophic factor/tropomyosin-related kinase B in hippocampus of hypertensive rats. J Cardiol. 2012;60:489–94.

    Article  PubMed  Google Scholar 

  35. Li JM, Mogi M, Tsukuda K, Tomochika H, Iwanami J, et al. Angiotensin II induced neural differenciation via angiotensin II type 2 (AT2) receptor- MMS2 cascade involving interaction between AT2 receptor-interacting protein and scr homology 2 domain containing protein tyrosine phosphatase 1. Mole Endocrinol. 2007;21:499–511.

  36. Horiuchi M, Mogi M, Iwai M. The angiotensin II type 2 receptor in the brain. J Renin Angiotensin Aldosterone Syst. 2010;11:1–6.

    Article  CAS  PubMed  Google Scholar 

  37. Iwai M, Liu HW, Chen R, Ide A, Okamoto S, et al. Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation. 2004;110:843–8.

    Article  CAS  PubMed  Google Scholar 

  38. Mogi M, Li MH, Iwanami J, Min LJ, Tsukuda K, et al. Angiotensin II type-2 receptor stimulation prevents neural damage by transcriptional activation of methyl methanesulfonate sensitive 2. Hypertension. 2006;48:141–8.

    Article  CAS  PubMed  Google Scholar 

  39. McCarthy CA, Vinh A, Callaway JC, Widdop RE. AT2R stimulation causes neuroprotection in a conscious rat model of stroke. Stroke. 2009;40:1482–9. The first proof of principal study that direct AT 2 R is stroke protective.

  40. McCarthy C, Vinh A, Broughton B, Sobey CG, Callaway J, et al. Angiotensin II type 2 receptor stimulation initiated after stroke causes neuroprotection in conscious rats. Hypertension. 2012;60:1531–7. The first report that direct AT 2 R stimulation after stroke reduces the severity of brain damage.

  41. Lee S, Brait VH, Arumugam TV, Evans MA, Kim HA, et al. Neuroprotective effect of an angiotensin receptor type 2 agonist following cerebral ischemia in vitro and in vivo. Exp Transl Stroke Med. 2012;4:16–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Rehman A, Leibowitz A, Yamamoto N, Rautureau Y, Paradis P, et al. Angiotensin type 2 receptor agonist compound 21 reduces vascular injury and myocardial fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension. 2012;59:291–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kaschina E, Grzesiak A, Li J, Foryst-Ludwig A, Timm M, et al. Angiotensin II type 2 receptor stimulation: a novel option of therapeutic interference with the renin-angiotensin system in myocardial infarction? Circulation. 2008;118:2523–32.

    Article  CAS  PubMed  Google Scholar 

  44. Joseph JP, Mecca AP, Regenhardt RW, Bennion DM, Rodriguez V, et al. The angiotensin type 2 receptor agonist Compound 21 elicits cerebroprotection in endothelin-1 induced ischemic stroke. Neuropharmacol. 2014;81:134–41. The first study to demonstrate stroke protection with C21 in normotensive rats.

    Article  CAS  Google Scholar 

  45. McCarthy C, Vinh A, Miller AA, Hallberg A, Alterman M, et al. Direct angiotensin AT2 receptor stimulation using a novel AT2 receptor agonist, Compound 21, evokes neuroprotection in conscious hypertensive rats. PLoS One. 2014;9(4):e95762. First report that treatment with C21, even up to 6 hours after stroke, is protective in conscious hypertensive rats.

  46. Min LJ, Mogi M, Tsukuda K, Jing F, Ohshima K, et al. Direct Stimulation of Angiotensin II Type 2 Receptor Initiated After Stroke Ameliorates Ischemic Brain Damage. Am J Hypertens. 2014, Feb 26 [Epub ahead of print]. First study to demonstrate stroke protection with C21 in mice.

  47. Vincent JM, Kwan YW, Chan SL, Perrin-Sarrado C, Atkinson J, et al. Constrictor and dilator effects of angiotensin II on cerebral arterioles. Stroke. 2005;36:2692–5.

    Article  Google Scholar 

  48. Rompe F, Artuc M, Hallberg A, Alterman M, Stroder K, et al. Direct angiotensin II type 2 receptor stimulation acts anti-inflammatory through epoxyeicosatrienoic acid and inhibition of nuclear factor kappaB. Hypertension. 2010;55:924–31.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao Y, Foryst-Ludwig A, Bruemmer D, Culman J, Bader M, et al. Angiotensin II induces peroxisome proliferator-activated receptor gamma in PC12W cells via angiotensin type 2 receptor activation. J Neurochem. 2005;94:1395–401.

    Article  CAS  PubMed  Google Scholar 

  50. Sumners C, Horiuchi M, Widdop RE, McCarthy C, Unger T, et al. Protective arms of the renin-angiotensin-system in neurological disease. Clin Exp Pharmacol Physiol. 2013;40:580–8.

    Article  CAS  PubMed  Google Scholar 

  51. Benicky J, Sanchez-Lemus E, Honda M, Pang T, Orecna M, et al. Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology. 2011;36:857–70.

  52. McCarthy CA, Widdop RE, Deliyanti D, Wilkinson-Berka JL. Brain and retinal microglia in health and disease: an unrecognized target of the renin-angiotensin system. Clin Exp Pharmacol Physiol. 2013;40:571–9.

    Article  CAS  PubMed  Google Scholar 

  53. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69.

    Article  CAS  PubMed  Google Scholar 

  54. Iwanami J, Mogi M, Tsukuda K, Min L, Sakata A. Deletion of angiotensin II type 2 receptor attenuates protective effects of bone marrow stromal cell treatment on ischemia-reperfusion brain injury in mice. Stroke. 2008;39:2554–9.

    Article  CAS  PubMed  Google Scholar 

  55. Iwanami J, Mogi M, Tsukuda K, Min L, Sakata A, et al. Effect of angiotensin II type 2 receptor deletion in hematopoietic cells on brain ischemia- reperfusion injury. Hypertension. 2011;58:404–9.

    Article  CAS  PubMed  Google Scholar 

  56. Chen J, Zhao Y, Chen S, Wang J, Xiao X, et al. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology. 2014;79C:550–8.

    Article  Google Scholar 

  57. Lu J, Jiang T, Wu L, Gao L, Wang Y, et al. The expression of angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas receptor axis are upregulated after acute cerebral ischemic stroke in rats. Neuropeptides. 2013;47:289–95.

    Article  CAS  PubMed  Google Scholar 

  58. Mecca AP, Regenhardt RW, O’Connor TE, Joseph JP, Raizada MK, et al. Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Exp Physiol. 2011;96:1084–96. First report that that Ang 1-7 is beneficial in the context of stroke.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Regenhardt RW, Mecca AP, Desland F, Ritucci-Chinni PF, Ludin JA, et al. Centrally administered angiotensin-(1-7) increases the survival of stroke-prone spontaneously hypertensive rats. Exp Physiol. 2014;99:442–53. First demonstration that Ang 1-7 is protective in a chronic model of stroke.

    Article  CAS  PubMed  Google Scholar 

  60. Sampaio WO, Nascimento AA, Santos RA. Systemic and regional hemodynamic effects of angiotensin-(1-7) in rats. Am J Physiol Heart Circ Physiol. 2003;284:H1985–94.

    CAS  PubMed  Google Scholar 

  61. Feterik K, Smith L, Katusic ZS. Angiotensin-(1-7) causes endothelium-dependent relaxation in canine middle cerebral artery. Brain Res. 2000;873:75–82.

    Article  CAS  PubMed  Google Scholar 

  62. Bosnyak S, Jones ES, Christopoulos A, Aguilar MI, Thomas WG, et al. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond). 2011;121:297–303.

  63. Santos RA, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J Endocrinol. 2013;216:R1–R17.

    Article  CAS  PubMed  Google Scholar 

  64. Xu P, Sriramula S, Lazartigues E. ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good. Am J Physiol Regul Integr Comp Physiol. 2011;300:R804–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Becker LK, Etelvino GM, Walther T, Santos RA, Campagnole-Santos MJ. Immunofluorescence localization of the receptor Mas in cardiovascular-related areas of the rat brain. Am J Physiol Heart Circ Physiol. 2007;293:H1416–24.

    Article  CAS  PubMed  Google Scholar 

  66. Regenhardt RW, Bennion DM, Sumners C. Cerebroprotective action of angiotensin peptides in stroke. Clin Sci (Lond). 2014;126:195–205.

    Article  CAS  Google Scholar 

  67. Regenhardt RW, Desland F, Mecca AP, Pioquinto DJ, Afzal A, et al. Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke. Neuropharmacology. 2013;71:154–63.

    Article  CAS  PubMed  Google Scholar 

  68. Jiang T, Gao L, Shi J, Lu J, Wang Y, et al. Angiotensin-(1-7) modulates renin-angiotensin system associated with reducing oxidative stress and attenuating neuronal apoptosis in the brain of hypertensive rats. Pharmacol Res. 2013;67:84–93.

    Article  CAS  PubMed  Google Scholar 

  69. Walters PE, Gaspari TA, Widdop RE. Angiotensin-(1-7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension. 2005;45:960–6.

    Article  CAS  PubMed  Google Scholar 

  70. Keller SR, Scott HM, Mastick CC, Aebersold R, Lienhard GE. Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J Biol Chem. 1995;270:23612–8.

    Article  CAS  PubMed  Google Scholar 

  71. Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, et al. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem. 2001;276:48623–6.

    Article  CAS  PubMed  Google Scholar 

  72. Fernando RN, Albiston AL, Chai SY. The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus–potential role in modulation of glucose uptake in neurones? Eur J Neurosci. 2008;28:588–98.

    Article  PubMed  Google Scholar 

  73. Faure S, Chapot R, Tallet D, Javellaud J, Achard JM, et al. Cerebroprotective effect of angiotensin IV in experimental ischemic stroke in the rat mediated by AT(4) receptors. J Physiol Pharmacol. 2006;57:329–42.

    CAS  PubMed  Google Scholar 

  74. Pham V, Albiston AL, Downes CE, Wong CH, Diwakarla S, et al. Insulin-regulated aminopeptidase deficiency provides protection against ischemic stroke in mice. J Neurotrauma. 2012;29:1243–8. Proof of principal study showing that inhibition of IRAP signalling reduces stroke damage.

    Article  PubMed  Google Scholar 

  75. Andersson H, Hallberg M. Discovery of inhibitors of insulin-regulated aminopeptidase as cognitive enhancers. Int J Hypertens. 2012;789671:18.

    Google Scholar 

Download references

Acknowledgement

Part of this work was funded by grants from the CASS foundation and the National Health and Medical Research Council of Australia (APP1007986).

Compliance with Ethics Guidelines

Conflict of Interest

Claudia A. McCarthy and Lachlan J. Facey declare that they have no conflict of interest.

Robert E. Widdop has received peer-funded research grants from the National Health and Medical Research Council of Australia and also the CASS Foundation.

Human and Animal Rights and Informed Consent

This article contains studies with animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Widdop.

Additional information

This article is part of the Topical Collection on Hypertension and the Kidney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarthy, C.A., Facey, L.J. & Widdop, R.E. The Protective Arms of the Renin-Angiontensin System in Stroke. Curr Hypertens Rep 16, 440 (2014). https://doi.org/10.1007/s11906-014-0440-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0440-1

Keywords

Navigation