Skip to main content

Advertisement

Log in

Environmental Endocrine Disruption of Energy Metabolism and Cardiovascular Risk

  • Macrovascular Complications in Diabetes (L Perreault, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Rates of metabolic diseases have increased at an astounding rate in recent decades. Even though poor diet and physical inactivity are central drivers, these lifestyle changes alone fail to fully account for the magnitude and rapidity of the epidemic. Thus, attention has turned to identifying novel risk factors, including the contribution of environmental endocrine disrupting chemicals. Epidemiologic and preclinical data support a role for various contaminants in the pathogenesis of diabetes. In addition to the vascular risk associated with dysglycemia, emerging evidence implicates multiple pollutants in the pathogenesis of atherosclerosis and cardiovascular disease. Reviewed herein are studies linking endocrine disruptors to these key diseases that drive significant individual and societal morbidity and mortality. Identifying chemicals associated with metabolic and cardiovascular disease as well as their mechanisms of action is critical for developing novel treatment strategies and public policy to mitigate the impact of these diseases on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. US Department of Health and Human Services, Centers for Disease Control and Prevention. 2011.

  2. ADA. Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 2013;36:1033–46.

    Google Scholar 

  3. Imperatore G, Boyle JP, Thompson TJ, Case D. Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2050. Diabetes Care. 2012;35:2515–20.

    PubMed Central  PubMed  Google Scholar 

  4. Gregg EW, Boyle JP, Thompson TJ, Barker LE. Modeling the impact of prevention policies on future diabetes prevalence in the United States: 2010-2030. Popul Health Metrics. 2013;11.

  5. International Diabetes Federation (IDF). Diabetes atlas. 6th edition. 2013.

  6. Matheus AS, Tannus LR, Cobas RA, Palma CC, Negrato CA, et al. Impact of diabetes on cardiovascular disease: an update. Int J Hypertens. 2013:653789.

  7. Cherian B, Meka N, Katragadda S, Arora R. Therapeutic implications of diabetes in cardiovascular disease. Am J Ther. 2009;16:e51–9.

    Google Scholar 

  8. Libby P, Nathan DM, Abraham K, Brunzell JD, Fradkin JE, et al. Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases Working Group on cardiovascular complications of type 1 diabetes mellitus. Circulation. 2005;111:3489–93.

    PubMed  Google Scholar 

  9. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–46.

    CAS  PubMed  Google Scholar 

  10. Carnethon MR, Biggs ML, Barzilay J, Kuller LH, Mozaffarian D, et al. Diabetes and coronary heart disease as risk factors for mortality in older adults. Am J Med. 2010;123:556. e551–9.

    PubMed Central  PubMed  Google Scholar 

  11. Hill JO. Environmental contributions to the obesity epidemic. Science. 1998;280:1371–4.

    CAS  PubMed  Google Scholar 

  12. Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. 2002;8:185–92.

    PubMed  Google Scholar 

  13. Thayer KA, Heindel JJ, Bucher JR, Gallo MA. Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect. 2012;120:779–89. An important overview of the work performed by the National Toxicology Program in reviewing the evidence linking various pollutants with the development of metabolic disease.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30:293–342.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Lee DH, Lee IK, Porta M, Steffes M, Jacobs Jr DR. Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999-2002. Diabetologia. 2007;50:1841–51.

    CAS  PubMed  Google Scholar 

  16. Kuo CC, Moon K, Thayer KA, Navas-Acien A. Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr Diab Rep. 2013;13:831–49.

    CAS  PubMed  Google Scholar 

  17. Alonso-Magdalena P, Quesada I, Nadal A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol. 2011;7:346–53.

    CAS  PubMed  Google Scholar 

  18. Lee DH, Steffes MW, Sjodin A, Jones RS, Needham LL, et al. Low dose of some persistent organic pollutants predicts type 2 diabetes: a nested case-control study. Environ Health Perspect. 2010;118:1235–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. De Coster S, van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Public Health. 2012:713696.

  20. Regnier SM, Sargis RM. Adipocytes under assault: environmental disruption of adipose physiology. Biochim Biophys Acta. 2013;1842(3):520–33

    Google Scholar 

  21. Sargis, RM. The Hijacking of Cellular Signaling and the Diabetes Epidemic: Mechanisms of Environmental Disruption of Insulin Action and Glucose Homeostasis. Diabetes & Metabolism Journal, 2014;38:13–24.

    Google Scholar 

  22. Lind L, Lind PM. Can persistent organic pollutants and plastic-associated chemicals cause cardiovascular disease? J Intern Med. 2012;271:537–53. An excellent review suggesting that environmental contaminants may play a role in cardiovascular disease. This review also discusses the sources of exposure to several chemicals linked to cardiovascular disease.

    CAS  PubMed  Google Scholar 

  23. Taylor KW, Novak RF, Anderson HA, Birnbaum LS, Blystone C, et al. Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiologic studies: a national toxicology program workshop review. Environ Health Perspect. 2013;121:774–83. A comprehensive review of the literature linking persistent organic pollutants with the development of diabetes. Based on this analysis, the authors concluded that there is sufficient evidence to suggest a link between persistent organic pollutants and diabetes.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, et al. Evaluation of the association between arsenic and diabetes: a National Toxicology Program workshop review. Environ Health Perspect. 2012;120:1658–70. A comprehensive review of the evidence linking arsenic to diabetes. Although the authors note that the connection is not firm, there is some evidence supporting a potential role for arsenic in the development of diabetes in certain populations.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs Jr DR, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33:378–455.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Lang IA, Galloway TS, Scarlett A. Association of urinary bisphenol a concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008;300:1303–10.

    CAS  PubMed  Google Scholar 

  27. Gasull M, Pumarega J, Tellez-Plaza M, Castell C, Tresserras R, et al. Blood concentrations of persistent organic pollutants and prediabetes and diabetes in the general population of Catalonia. Environ Sci Technol. 2012;46:7799–810.

    CAS  PubMed  Google Scholar 

  28. Hoogduijn MJ, Rakonczay Z, Genever PG. The effects of anticholinergic insecticides on human mesenchymal stem cells. Toxicol Sci. 2006;94:342–50.

    CAS  PubMed  Google Scholar 

  29. Roos V, Rönn M, Salihovic S, Lind L, Bavel Bv, et al. Circulating levels of persistent organic pollutants in relation to visceral and subcutaneous adipose tissue by abdominal MRI. Obesity. 2013;21(2):413–8

  30. Frederiksen H, Skakkebaek NE, Andersson AM. Metabolism of phthalates in humans. Mol Nutr Food Res. 2007;51:899–911.

    CAS  PubMed  Google Scholar 

  31. Stahlhut RW, van Wijngaarden E, Dye TD, Cook S, Swan SH. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ Health Perspect. 2007;115:876–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Kim JH, Park HY, Bae S, Lim YH, Hong YC. Diethylhexyl phthalates is associated with insulin resistance via oxidative stress in the elderly: a panel study. PLoS One. 2013;8:e71392.

    PubMed Central  PubMed  Google Scholar 

  33. Wang T, Li M, Chen B, Xu M, Xu Y, et al. Urinary Bisphenol A (BPA) concentration associates with obesity and insulin resistance. J Clin Endocrinol Metab. 2012;97:E223–7.

    CAS  PubMed  Google Scholar 

  34. Chang JW, Chen HL, Su HJ, Liao PC, Guo HR, et al. Dioxin exposure and insulin resistance in Taiwanese living near a highly contaminated area. Epidemiology. 2010;21:56–61.

    PubMed  Google Scholar 

  35. Brook RD, Xu X, Bard RL, Dvonch JT, Morishita M, et al. Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution. Sci Total Environ. 2013;448:66–71.

    CAS  PubMed  Google Scholar 

  36. Coogan PF, White LF, Jerrett M, Brook RD, Su JG, et al. Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles. Circulation. 2012;125:767–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Kim JH, Hong YC. GSTM1, GSTT1, and GSTP1 polymorphisms and associations between air pollutants and markers of insulin resistance in elderly Koreans. Environ Health Perspect. 2012;120:1378–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Greenberg CC, Danos AM, Brady MJ. Central role for protein targeting to glycogen in the maintenance of cellular glycogen stores in 3T3-L1 adipocytes. Mol Cell Biol. 2006;26:334–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Lind PM, Lind L. Circulating levels of bisphenol A and phthalates are related to carotid atherosclerosis in the elderly. Atherosclerosis. 2011;218:207–13.

    CAS  PubMed  Google Scholar 

  40. Lind PM, van Bavel B, Salihovic S, Lind L. Circulating levels of persistent organic pollutants (POPs) and carotid atherosclerosis in the elderly. Environ Health Perspect. 2012;120:38–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Osorio-Yanez C, Ayllon-Vergara JC, Aguilar-Madrid G, Arreola-Mendoza L, Hernandez-Castellanos E, et al. Carotid intima-media thickness and plasma asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. Environ Health Perspect. 2013;121:1090–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Fukuda D, Shimada K, Tanaka A, Kusuyama T, Yamashita H, et al. Comparison of levels of serum matrix metalloproteinase-9 in patients with acute myocardial infarction versus unstable angina pectoris versus stable angina pectoris. Am J Cardiol. 2006;97:175–80.

    CAS  PubMed  Google Scholar 

  43. Burgess JL, Kurzius-Spencer M, O'Rourke MK, Littau SR, Roberge J, et al. Environmental arsenic exposure and serum matrix metalloproteinase-9. J Expo Sci Environ Epidemiol. 2013;23:163–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Chen Y, Wu F, Graziano JH, Parvez F, Liu M, et al. Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh. Am J Epidemiol. 2013;178:372–81.

    PubMed Central  PubMed  Google Scholar 

  45. Fruchart JC, Nierman MC, Stroes ES, Kastelein JJ, Duriez P. New risk factors for atherosclerosis and patient risk assessment. Circulation. 2004;109:III15–9.

    PubMed  Google Scholar 

  46. Everett CJ, Mainous III AG, Frithsen IL, Player MS, Matheson EM. Association of polychlorinated biphenyls with hypertension in the 1999-2002 National Health and Nutrition Examination Survey. Environ Res. 2008;108:94–7.

    CAS  PubMed  Google Scholar 

  47. Bannenberg G, Martin HJ, Belai I, Maser E. 11beta-Hydroxysteroid dehydrogenase type 1: tissue-specific expression and reductive metabolism of some anti-insect agent azole analogues of metyrapone. Chem Biol Interact. 2003;143–4:449–57.

    Google Scholar 

  48. Karim MR, Rahman M, Islam K, Mamun AA, Hossain S, et al. Increases in oxidized low-density lipoprotein and other inflammatory and adhesion molecules with a concomitant decrease in high-density lipoprotein in the individuals exposed to arsenic in Bangladesh. Toxicol Sci. 2013;135:17–25.

    CAS  PubMed  Google Scholar 

  49. Auerbach O, Hammond EC, Garfinkel L. Smoking in relation to atherosclerosis of the coronary arteries. N Engl J Med. 1965;273:775–9.

    CAS  PubMed  Google Scholar 

  50. Nazaroff WW, Singer BC. Inhalation of hazardous air pollutants from environmental tobacco smoke in US residences. J Expo Anal Environ Epidemiol. 2004;14 Suppl 1:S71–7.

    CAS  PubMed  Google Scholar 

  51. Ding YS, Zhang L, Jain RB, Jain N, Wang RY, et al. Levels of tobacco-specific nitrosamines and polycyclic aromatic hydrocarbons in mainstream smoke from different tobacco varieties. Cancer Epidemiol Biomarkers Prev. 2008;17:3366–71.

    CAS  PubMed  Google Scholar 

  52. Invernizzi G, Ruprecht A, Mazza R, Rossetti E, Sasco A, et al. Particulate matter from tobacco versus diesel car exhaust: an educational perspective. Tob Control. 2004;13:219–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Bae S, Pan XC, Kim SY, Park K, Kim YH, et al. Exposures to particulate matter and polycyclic aromatic hydrocarbons and oxidative stress in schoolchildren. Environ Health Perspect. 2010;118:579–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Pope III CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, et al. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiologic evidence of general pathophysiological pathways of disease. Circulation. 2004;109:71–7.

    PubMed  Google Scholar 

  55. Fagerberg B, Bergstrom G, Boren J, Barregard L. Cadmium exposure is accompanied by increased prevalence and future growth of atherosclerotic plaques in 64-year-old women. J Intern Med. 2012;272:601–10.

    PubMed  Google Scholar 

  56. Messner B, Knoflach M, Seubert A, Ritsch A, Pfaller K, et al. Cadmium is a novel and independent risk factor for early atherosclerosis mechanisms and in vivo relevance. Arterioscler Thromb Vasc Biol. 2009;29:1392–8.

    CAS  PubMed  Google Scholar 

  57. Richardson VM, Staskal DF, Ross DG, Diliberto JJ, DeVito MJ, et al. Possible mechanisms of thyroid hormone disruption in mice by BDE 47, a major polybrominated diphenyl ether congener. Toxicol Appl Pharmacol. 2008;226:244–50.

    CAS  PubMed  Google Scholar 

  58. Baker NA, Karounos M, English V, Fang J, Wei Y, et al. Coplanar polychlorinated biphenyls impair glucose homeostasis in lean C57BL/6 mice and mitigate beneficial effects of weight loss on glucose homeostasis in obese mice. Environ Health Perspect. 2013;121:105–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Ogino K, Inukai T, Miura Y, Matsui H, Takemura Y. Triphenyltin chloride induces glucose intolerance by the suppression of insulin release from hamster pancreatic beta-cells. Exp Clin Endocrinol Diabetes. 1996;104:409–11.

    CAS  PubMed  Google Scholar 

  60. Hill DS, Wlodarczyk BJ, Mitchell LE, Finnell RH. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model. Toxicol Appl Pharmacol. 2009;239:29–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Gray SL, Shaw AC, Gagne AX, Chan HM. Chronic exposure to PCBs (Aroclor 1254) exacerbates obesity-induced insulin resistance and hyperinsulinemia in mice. J Toxicol Environ Health A. 2013;76:701–15.

    CAS  PubMed  Google Scholar 

  62. Alonso-Magdalena P, Vieira E, Soriano S, Menes L, Burks D, et al. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ Health Perspect. 2010;118:1243–50. An important manuscript from a productive group specifically linking developmental endocrine disruptor exposure to metabolic derangements.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Liu J, Yu P, Qian W, Li Y, Zhao J, et al. Perinatal bisphenol A exposure and adult glucose homeostasis: identifying critical windows of exposure. PLoS One. 2013;8:e64143.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Nash JT, Szabo DT, Carey GB. Polybrominated diphenyl ethers alter hepatic phosphoenolpyruvate carboxykinase enzyme kinetics in male Wistar rats: implications for lipid and glucose metabolism. J Toxicol Environ Health A. 2013;76:142–56.

    Google Scholar 

  65. Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock EJ, et al. Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ Health Perspect. 2010;118:465–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Lim S, Ahn SY, Song IC, Chung MH, Jang HC, et al. Chronic exposure to the herbicide, atrazine, causes mitochondrial dysfunction and insulin resistance. PLoS One. 2009;4:e5186.

    PubMed Central  PubMed  Google Scholar 

  67. Yan YH, Chou CC, Lee CT, Liu JY, Cheng TJ. Enhanced insulin resistance in diet-induced obese rats exposed to fine particles by instillation. Inhal Toxicol. 2011;23:507–19.

    CAS  PubMed  Google Scholar 

  68. Paul DS, Walton FS, Saunders RJ, Stýblo M. Characterization of the impaired glucose homeostasis produced in C57BL/6 mice by chronic exposure to arsenic and high-fat diet. Environ Health Perspect. 2011;119:1104–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85:571–633.

    CAS  PubMed  Google Scholar 

  70. Newbold RR, Padilla-Banks E, Jefferson WN. Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology. 2006;147:S11–7.

    CAS  PubMed  Google Scholar 

  71. Manikkam M, Guerrero-Bosagna C, Tracey R, Haque MM, Skinner MK. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One. 2012;7:e31901.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Angle BM, Do RP, Ponzi D, Stahlhut RW, Drury BE, et al. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod Toxicol. 2013;42:256–68.

    Google Scholar 

  73. Wei J, Lin Y, Li Y, Ying C, Chen J, et al. Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology. 2011;152:3049–61.

    CAS  PubMed  Google Scholar 

  74. Leibel RL. Molecular physiology of weight regulation in mice and humans. Int J Obes (Lond). 2008;32 Suppl 70:S98–108.

    CAS  Google Scholar 

  75. Lv Z, Li G, Li Y, Ying C, Chen J, et al. Glucose and lipid homeostasis in adult rat is impaired by early-life exposure to perfluorooctane sulfonate. Environ Toxicol. 2013;28:532–42.

    CAS  PubMed  Google Scholar 

  76. White SS, Fenton SE, Hines EP. Endocrine disrupting properties of perfluorooctanoic acid. J Steroid Biochem Mol Biol. 2011;127:16–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, et al. Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol. 2007;27:1706–21.

    CAS  PubMed  Google Scholar 

  78. Dalton TP, Kerzee JK, Wang B, et al. Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovasc Toxicol. 2001;01:285–98.

    Google Scholar 

  79. Wu D, Nishimura N, Kuo V, Fiehn O, Shahbaz S, et al. Activation of aryl hydrocarbon receptor induces vascular inflammation and promotes atherosclerosis in apolipoprotein E-/- mice. Arterioscler Thromb Vasc Biol. 2011;31:1260–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Curfs DM, Knaapen AD, Pachen DM. Polycyclic aromatic hydrocarbons induce an inflammatory atherosclerotic plaque phenotype irrespective of their DNA binding properties. FASEB. 2005;19(10):1290–2.

    Google Scholar 

  81. Chen T, Jia G, Wei Y, Li J. Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice. Toxicol Lett. 2013;223:146–53.

    CAS  PubMed  Google Scholar 

  82. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145:341–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Rogalska J, Brzoska MM, Roszczenko A, Moniuszko-Jakoniuk J. Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact. 2009;177:142–52.

    CAS  PubMed  Google Scholar 

  84. Olisekodiaka MJ, Igbeneghu CA, Onuegbu AJ, Oduru R, Lawal AO. Lipid, lipoproteins, total antioxidant status and organ changes in rats administered high doses of cadmium chloride. Med Princ Pract. 2012;21:156–9.

    CAS  PubMed  Google Scholar 

  85. Cheng TJ, Chuu JJ, Chang CY, Tsai WC, Chen KJ, et al. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism. Toxicol Appl Pharmacol. 2011;256:146–53.

    CAS  PubMed  Google Scholar 

  86. Miyawaki J, Sakayama K, Kato H. Perinatal and postnatal exposure to bisphenol A increases adipose tissue mass and serum cholesterol level in mice. J Atheroscler Thromb. 2007;14(5):245–52.

    Google Scholar 

  87. Sugai E, Yoshioka W, Kakeyama M, Ohsako S, Tohyama C. In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin modulates dysregulation of the lipid metabolism in mouse offspring fed a high-calorie diet. J Appl Toxicol. 2013;34(3):296–306.

    Google Scholar 

  88. Bruin JE, Gerstein HC, Holloway AC. Long-term consequences of fetal and neonatal nicotine exposure: a critical review. Toxicol Sci. 2010;116:364–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Xiao D, Huang X, Yang S, Zhang L. Estrogen normalizes perinatal nicotine-induced hypertensive responses in adult female rat offspring. Hypertension. 2013;61:1246–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Holloway AC, Cuu DQ, Morrison KM, Gerstein HC, Tarnopolsky MA. Transgenerational effects of fetal and neonatal exposure to nicotine. Endocrine. 2007;31:254–9.

    CAS  PubMed  Google Scholar 

  91. Heeschen C, Jang JJ, Weis M. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med. 2001;7:833–9.

    CAS  PubMed  Google Scholar 

  92. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.

    CAS  PubMed  Google Scholar 

  93. Kurita H, Yoshioka W, Nishimura N, Kubota N, Kadowaki T, et al. Aryl hydrocarbon receptor-mediated effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on glucose-stimulated insulin secretion in mice. J Appl Toxicol. 2009;29:689–94.

    CAS  PubMed  Google Scholar 

  94. Piaggi S, Novelli M, Martino L, Masini M, Raggi C, et al. Cell death and impairment of glucose-stimulated insulin secretion induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the beta-cell line INS-1E. Toxicol Appl Pharmacol. 2007;220:333–40.

    CAS  PubMed  Google Scholar 

  95. Novelli M, Piaggi S, De Tata V. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin-induced impairment of glucose-stimulated insulin secretion in isolated rat pancreatic islets. Toxicol Lett. 2005;156:307–14.

    CAS  PubMed  Google Scholar 

  96. Wassermann D, Wassermann M, Lemesch C. Ultrastructure of beta-cells of the endocrine pancreas in rats receiving polychlorinated biphenyls. Environ Physiol Biochem. 1975;5:322–40.

    Google Scholar 

  97. Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, et al. Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ Health Perspect. 2005;113:969–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Soriano S, Alonso-Magdalena P, Garcia-Arevalo M, Novials A, Muhammed SJ, et al. Rapid insulinotropic action of low doses of bisphenol-A on mouse and human islets of Langerhans: role of estrogen receptor beta. PLoS One. 2012;7:e31109.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Miura Y, Matsui H. Triphenyltin impairs a protein kinase A (PKA)-dependent increase of cytosolic Na + and Ca2+ and PKA-independent increase of cytosolic Ca2+ associated with insulin secretion in hamster pancreatic beta-cells. Toxicol Appl Pharmacol. 2006;216:363–72.

    CAS  PubMed  Google Scholar 

  100. Chang KC, Hsu CC, Liu SH, Su CC, Yen CC, et al. Cadmium induces apoptosis in pancreatic beta-cells through a mitochondria-dependent pathway: the role of oxidative stress-mediated c-Jun N-terminal kinase activation. PLoS One. 2013;8:e54374.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Chen YW, Huang CF, Yang CY, Yen CC, Tsai KS, et al. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways. Toxicol Appl Pharmacol. 2010;243:323–31.

    CAS  PubMed  Google Scholar 

  102. Douillet C, Currier J, Saunders J, Bodnar WM, Matousek T, et al. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets. Toxicol Appl Pharmacol. 2013;267:11–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Fu J, Woods CG, Yehuda-Shnaidman E, Zhang Q, Wong V, et al. Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect. 2010;118:864–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Fischer LJ, Zhou HR, Wagner MA. Polychlorinated biphenyls release insulin from RINm5F cells. Life Sci. 1996;59:2041–9.

    CAS  PubMed  Google Scholar 

  105. Nishiumi S, Yoshida M, Azuma T, Yoshida K, Ashida H. 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs an insulin signaling pathway through the induction of tumor necrosis factor-alpha in adipocytes. Toxicol Sci. 2010;115:482–91.

    CAS  PubMed  Google Scholar 

  106. Jayashree S, Indumathi D, Akilavalli N, Sathish S, Selvaraj J, et al. Effect of Bisphenol-A on insulin signal transduction and glucose oxidation in liver of adult male albino rat. Environ Toxicol Pharmacol. 2013;35:300–10.

    CAS  PubMed  Google Scholar 

  107. Rajesh P, Sathish S, Srinivasan C, Selvaraj J, Balasubramanian K. Phthalate is associated with insulin resistance in adipose tissue of male rat: role of antioxidant vitamins. J Cell Biochem. 2013;114:558–69.

    CAS  PubMed  Google Scholar 

  108. Sargis RM, Neel BA, Brock CO, Lin Y, Hickey AT, et al. The novel endocrine disruptor tolylfluanid impairs insulin signaling in primary rodent and human adipocytes through a reduction in insulin receptor substrate-1 levels. Biochim Biophys Acta. 1822;2012:952–60.

    Google Scholar 

  109. Zheng Z, Xu X, Zhang X, Wang A, Zhang C, et al. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model. J Hepatol. 2013;58:148–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Xue P, Hou Y, Zhang Q, Woods CG, Yarborough K, et al. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: involvement of the adaptive antioxidant response. Biochem Biophys Res Commun. 2011;407:360–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation. 2009;119:538–46.

    CAS  PubMed  Google Scholar 

  112. Wang J, Lv X, Du Y. Inflammatory response and insulin signaling alteration induced by PCB77. J Environ Sci (China). 2010;22:1086–90.

    Google Scholar 

  113. Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS, et al. Arsenic inhibits myogenic differentiation and muscle regeneration. Environ Health Perspect. 2010;118:949–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Han JC, Park SY, Hah BG, Choi GH, Kim YK, et al. Cadmium induces impaired glucose tolerance in rat by down-regulating glucose transporter type 4 (GLUT4) expression in adipocytes. Arch Biochem Biophys. 2003;413:213–20.

    CAS  PubMed  Google Scholar 

  115. Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinical implications. Diabetologia. 2012;55:2319–26.

    Google Scholar 

  116. Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, et al. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect. 2008;116:1642–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Kawakami T, Sugimoto H, Furuichi R, Kadota Y, Inoue M, et al. Cadmium reduces adipocyte size and expression levels of adiponectin and Peg1/Mest in adipose tissue. Toxicology. 2010;267:20–6.

    CAS  PubMed  Google Scholar 

  118. Zuo Z, Chen S, Wu T, Zhang J, Su Y, et al. Tributyltin causes obesity and hepatic steatosis in male mice. Environ Toxicol. 2011;26:79–85.

    Google Scholar 

  119. Xu Z, Xu X, Zhong M, Hotchkiss IP, Lewandowski RP, et al. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues. Part Fibre Toxicol. 2011;8:20.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Wang M, Wang D, Zhang Y, Wang X, Liu Y, et al. Adiponectin increases macrophages cholesterol efflux and suppresses foam cell formation in patients with type 2 diabetes mellitus. Atherosclerosis. 2013;229:62–70.

    CAS  PubMed  Google Scholar 

  121. Kleemann R, Zadelaar S, Kooistra T. Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res. 2008;79:360–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Majkova Z, Layne J, Sunkara M, Morris AJ, Toborek M, et al. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls. Toxicol Appl Pharmacol. 2011;251:41–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Vogel CFA, Sciullo E, Wong P, Kuzmicky P, Kado N, et al. Induction of proinflammatory cytokines and C-reactive protein in human macrophage cell line U937 exposed to air pollution particulates. Environ Health Perspect. 2005;113:1536–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Libby P. Inflammation and atherosclerosis. Circulation. 2002;105:1135–43.

    CAS  PubMed  Google Scholar 

  125. Majkova Z, Smart E, Toborek M, Hennig B. Upregulation of endothelial monocyte chemoattractant protein-1 by coplanar PCB77 is caveolin-1-dependent. Toxicol Appl Pharmacol. 2009;237:1–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Knaapen AM, Curfs DM, Pachen DM, Gottschalk RW, de Winther MP, et al. The environmental carcinogen benzo[a]pyrene induces expression of monocyte-chemoattractant protein-1 in vascular tissue: a possible role in atherogenesis. Mutat Res. 2007;621:31–41.

    CAS  PubMed  Google Scholar 

  127. Vogel CF, Nishimura N, Sciullo E, Wong P, Li W, et al. Modulation of the chemokines KC and MCP-1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice. Arch Biochem Biophys. 2007;461:169–75.

    CAS  PubMed  Google Scholar 

  128. Arsenescu V, Arsenescu RI, King V, Swanson H, Cassis LA. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect. 2008;116:761–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Angeli JK, Cruz Pereira CA, de Oliveira FT, Stefanon I, Padilha AS, et al. Cadmium exposure induces vascular injury due to endothelial oxidative stress: the role of local angiotensin II and COX-2. Free Radic Biol Med. 2013;65C:838–48.

    Google Scholar 

  130. Hennig B. Proinflammatory properties of coplanar PCBs: in vitro and in vivo evidence. Toxicol Appl Pharmacol. 2002;181:174–83.

    CAS  PubMed  Google Scholar 

  131. Birch LL, Deysher M. Caloric compensation and sensory specific satiety: evidence for self-regulation of food intake by young children. Appetite. 1986;7:323–31.

    CAS  PubMed  Google Scholar 

  132. Arsenescu V, Arsenescu R, Parulkar M, Karounos M, Zhang X, et al. Polychlorinated biphenyl 77 augments angiotensin II-induced atherosclerosis and abdominal aortic aneurysms in male apolipoprotein E deficient mice. Toxicol Appl Pharmacol. 2011;257:148–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Fang CC, Chen FY, Chen CR, Liu CC, Wong LC, et al. Cyprodinil as an activator of aryl hydrocarbon receptor. Toxicology. 2013;304:32–40.

    CAS  PubMed  Google Scholar 

  134. Druwe IL, Sollome JJ, Sanchez-Soria P, Hardwick RN, Camenisch TD, et al. Arsenite activates NFkappaB through induction of C-reactive protein. Toxicol Appl Pharmacol. 2012;261:263–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Wolin MS. Interactions of oxidants with vascular signaling systems. Arterioscler Thromb Vasc Biol. 2000;20:1430–42.

    CAS  PubMed  Google Scholar 

  136. Dikalov SI, Nazarewicz RR. Angiotensin II-induced production of mitochondrial reactive oxygen species (ROS): potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal. 2013;19:1085–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Ceriello A. Evidence for an Independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. Circulation. 2002;106:1211–8.

    PubMed  Google Scholar 

  138. Hossain E, Ota A, Karnan S, Damdindorj L, Takahashi M, et al. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells. Toxicol Appl Pharmacol. 2013;273(3):651–8.

    Google Scholar 

  139. Xiao D, Huang X, Lawrence J, Yang S, Zhang L. Fetal and neonatal nicotine exposure differentially regulates vascular contractility in adult male and female offspring. J Pharmacol Exp Ther. 2007;320:654–61.

    CAS  PubMed  Google Scholar 

  140. Tavolari S, Bucci L, Tomasi V, Guarnieri T. Selected polychlorobiphenyls congeners bind to estrogen receptor alpha in human umbilical vascular endothelial (HUVE) cells modulating angiogenesis. Toxicology. 2006;218:67–74.

    CAS  PubMed  Google Scholar 

  141. Ribeiro-Varandas E, Viegas W, Sofia Pereira H, Delgado M. Bisphenol A at concentrations found in human serum induces aneugenic effects in endothelial cells. Mutat Res. 2013;751:27–33.

    CAS  PubMed  Google Scholar 

  142. Adigun AA, Wrench N, Seidler FJ, Slotkin TA. Neonatal organophosphorus pesticide exposure alters the developmental trajectory of cell-signaling cascades controlling metabolism: differential effects of diazinon and parathion. Environ Health Perspect. 2010;118:210–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Kucka M, Pogrmic-Majkic K, Fa S, Stojilkovic SS, Kovacevic R. Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4. Toxicol Appl Pharmacol. 2012;265:19–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Atanasov AG, Tam S, Röcken JM, Baker ME, Odermatt A. Inhibition of 11β-hydroxysteroid dehydrogenase type 2 by dithiocarbamates. Biochem Biophys Res Commun. 2003;308:257–62.

    CAS  PubMed  Google Scholar 

  145. Atanasov AG, Nashev LG, Tam S, Baker ME, Odermatt A. Organotins disrupt the 11β-Hydroxysteroid Dehydrogenase Type 2–dependent local inactivation of glucocorticoids. Environ Health Perspect. 2005;113:1600–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Yang K, Julan L, Rubio F, Sharma A, Guan H. Cadmium reduces 11 beta-hydroxysteroid dehydrogenase type 2 activity and expression in human placental trophoblast cells. Am J Physiol Endocrinol Metab. 2006;290:E135–42.

    CAS  PubMed  Google Scholar 

  147. Newbold RR, Padilla-Banks E, Jefferson WN. Environmental estrogens and obesity. Mol Cell Endocrinol. 2009;304:84–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol. 2011;24:6–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Joharapurkar AA, Dhote VV, Jain MR. Selective thyromimetics using receptor and tissue selectivity approaches: prospects for dyslipidemia. J Med Chem. 2012;55:5649–75.

    CAS  PubMed  Google Scholar 

  150. Kitamura S, Jinno N, Suzuki T, Sugihara K, Ohta S, et al. Thyroid hormone-like and estrogenic activity of hydroxylated PCBs in cell culture. Toxicology. 2005;208:377–87.

    CAS  PubMed  Google Scholar 

  151. Mastorakos G, Karoutsou EI, Mizamtsidi M, Creatsas G. The menace of endocrine disruptors on thyroid hormone physiology and their impact on intrauterine development. Endocrine. 2007;31:219–37.

    CAS  PubMed  Google Scholar 

  152. Neel BA, Brady MJ, Sargis RM. The endocrine disrupting chemical tolylfluanid alters adipocyte metabolism via glucocorticoid receptor activation. Mol Endocrinol. 2013;27:394–406.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Bodwell JE, Kingsley LA. Arsenic at very low concentrations alters glucocorticoid receptor (GR)-mediated gene activation but not GR-mediated gene repression: complex dose-response effects are closely correlated with levels of activated GR and require a functional GR DNA binding domain. Chem Res Toxicol. 2004;17:1064–76.

    CAS  PubMed  Google Scholar 

  154. Zhou T, Cong S, Sun S, Sun H, Zou R, et al. Identification of endocrine disrupting chemicals activating SXR-mediated transactivation of CYP3A and CYP7A1. Mol Cell Endocrinol. 2013;365:36–43.

    CAS  PubMed  Google Scholar 

  155. Sargis RM, Subbaiah PV. Trans Unsaturated Fatty Acids are Less Oxidizable than Cis Unsaturated Fatty Acids and Protect Endogenous Lipids from Oxidation in Lipoproteins and Lipid Bilayers. Biochemistry. 2003;42:11533–43.

    Google Scholar 

  156. Sargis RM, Subbaiah PV. Protection of membrane cholesterol by sphingomyelin against free radical-mediated oxidation. Free Radic Biol Med. 2006;40:2092–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Ratajczak MK, Ko YT, Lange Y, Steck TL, Lee KY. Cholesterol displacement from membrane phospholipids by hexadecanol. Biophys J. 2007;93:2038–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Chen S, Subbaiah PV. Regioisomers of phosphatidylcholine containing DHA and their potential to deliver DHA to the brain: role of phospholipase specificities. Lipids. 2013;48:675–86.

    CAS  PubMed  Google Scholar 

  159. Marmugi A, Ducheix S, Lasserre F, Polizzi A, Paris A, et al. Low doses of bisphenol A induce gene expression related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology. 2012;55:395–407.

    CAS  PubMed  Google Scholar 

  160. Beausoleil C, Ormsby JN, Gies A, Hass U, Heindel JJ, et al. Low dose effects and non-monotonic dose responses for endocrine active chemicals: science to practice workshop: workshop summary. Chemosphere. 2013;93:847–56.

    CAS  PubMed  Google Scholar 

  161. Miki Y, Suzuki T, Tazawa C, Blumberg B, Sasano H. Steroid and xenobiotic receptor (SXR), cytochrome P450 3A4 and multidrug resistance gene 1 in human adult and fetal tissues. Mol Cell Endocrinol. 2005;231:75–85.

    CAS  PubMed  Google Scholar 

  162. Ma Y, Xia W, Wang DQ, Wan YJ, Xu B, et al. Hepatic DNA methylation modifications in early development of rats resulting from perinatal BPA exposure contribute to insulin resistance in adulthood. Diabetologia. 2013;56:2059–67.

    CAS  PubMed  Google Scholar 

  163. Han JC, Park SY, Hah BG, Choi GH, Kim YK, et al. Cadmium induces impaired glucose tolerance in rat by down-regulating GLUT4 expression in adipocytes. Arch Biochem Biophys. 2003;413:213–20.

    CAS  PubMed  Google Scholar 

  164. Seilkop SK, Campen MJ, Lund AK, McDonald JD, Mauderly JL. Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice. Inhal Toxicol. 2012;24:270–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Dalton TP, Kerzee JK, Wang B. Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovasc Toxicol. 2001;01:285–98.

    CAS  Google Scholar 

  166. Kopf PG, Huwe JK, Walker MK. Hypertension, cardiac hypertrophy, and impaired vascular relaxation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are associated with increased superoxide. Cardiovasc Toxicol. 2008;8:181–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Panahi P, Vosough-Ghanbari S, Pournourmohammadi S, Ostad SN, Nikfar S, et al. Stimulatory effects of malathion on the key enzymes activities of insulin secretion in langerhans islets, glutamate dehydrogenase and glucokinase. Toxicol Mech Methods. 2006;16:161–7.

    CAS  PubMed  Google Scholar 

  168. Lind PM, Orberg J, Edlund UB, Sjoblom L, Lind L. The dioxin-like pollutant PCB 126 (3,3',4,4',5-pentachlorobiphenyl) affects risk factors for cardiovascular disease in female rats. Toxicol Lett. 2004;150:293–9.

    CAS  PubMed  Google Scholar 

  169. Kampfrath T, Maiseyeu A, Ying Z, Shah Z, Deiuliis JA, et al. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ Res. 2011;108:716–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Grun F, Watanabe H, Zamanian Z, Maeda L, Arima K, et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol. 2006;20:2141–55.

    CAS  PubMed  Google Scholar 

  171. Zuo Z, Chen S, Wu T, Zhang J, Su Y, et al. Tributyltin causes obesity and hepatic steatosis in male mice. Environ Toxicol. 2011;26:79–85.

    CAS  PubMed  Google Scholar 

  172. Li X, Pham HT, Janesick AS, Blumberg B. Triflumizole is an obesogen in mice that acts through peroxisome proliferator activated receptor gamma (PPARgamma). Environ Health Perspect. 2012;120:1720–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Alves MG, Neuhaus-Oliveira A, Moreira PI, Socorro S, Oliveira PF. Exposure to 2,4-dichlorophenoxyacetic acid alters glucose metabolism in immature rat Sertoli cells. Reprod Toxicol. 2013;38:81–8.

    CAS  PubMed  Google Scholar 

  174. Wens B, De Boever P, Verbeke M, Hollanders K, Schoeters G. Cultured human peripheral blood mononuclear cells alter their gene expression when challenged with endocrine-disrupting chemicals. Toxicology. 2013;303:17–24.

    CAS  PubMed  Google Scholar 

  175. Wang Y, Hu H, Zhao M, Zhao J, Yin D, et al. Nonylphenol disrupts the cardio-protective effects of 17beta-estradiol on ischemia/reperfusion injury in isolated hearts of guinea pig. J Toxicol Sci. 2013;38:731–40.

    CAS  PubMed  Google Scholar 

  176. Wang X, Porter W, Krishnan V, Narasimhan TR, Safe S. Mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated decrease of the nuclear estrogen receptor in MCF-7 human breast cancer cells. Mol Cell Endocrinol. 1993;96:159–66.

    CAS  PubMed  Google Scholar 

  177. Puga A, Sartor MA, Huang MY, Kerzee JK, Wei YD, et al. Gene expression profiles of mouse aorta and cultured vascular smooth muscle cells differ widely, yet show common responses to dioxin exposure. Cardiovasc Toxicol. 2004;4:385–404.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Due to reference constraints, the authors were unable to include all the important work performed in the field of endocrine disruption of metabolism and cardiovascular disease. The current manuscript was meant to emphasize important aspects of environmental disruption of energy homeostasis and cardiovascular risk; any omissions were not meant to exclude important work contributing to the hypothesis that environmental contaminants play an important pathogenic role in the global epidemic of metabolic and cardiovascular disease. This work was supported by grants from the National Institutes of Health (K08-ES019176, R21-ES021354, and the Diabetes Research and Training Center [P60-DK020595]).

Compliance with Ethics Guidelines

Conflict of Interest

Andrew G. Kirkley declares that he has no conflict of interest. Robert M. Sargis has received honoraria from the Korean Diabetes Association.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Sargis.

Additional information

Topical Collection on Macrovascular Complications in Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirkley, A.G., Sargis, R.M. Environmental Endocrine Disruption of Energy Metabolism and Cardiovascular Risk. Curr Diab Rep 14, 494 (2014). https://doi.org/10.1007/s11892-014-0494-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0494-0

Keywords

Navigation