Skip to main content

Advertisement

Log in

Epigenetics of Insulin Resistance: An Emerging Field in Translational Medicine

  • Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this article, we review the current knowledge of and recent insights into the role of epigenetic factors in the development of insulin resistance (IR), with emphasis on peroxisome proliferator-activated receptor gamma coactivator 1α (PPARGC1A or PGC1α) methylation on fetal programming and liver modulation of glucose-related phenotypes. We discuss the pathogenesis of IR beyond the integrity of β-cell function and illustrate the novel concept of mitochondrial epigenetics to explain the pathobiology of metabolic-syndrome-related phenotypes. Moreover, we discuss whether epigenetic marks in genes of the circadian rhythm system are able to modulate insulin/glucose-related metabolic functions and place hypoxia inducible factor 1 α (HIF1α) as a part of the master CLOCK gene/protein interaction network that might modulate IR. Finally, we highlight relevant information about epigenetic marks and IR so that clinicians practicing in the community may envision future areas of medical intervention and predict putative biomarkers for early disease detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–607.

    Article  PubMed  CAS  Google Scholar 

  2. Dastani Z, Hivert MF, Timpson N, et al. Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet. 2012;8:e1002607.

    Article  PubMed  CAS  Google Scholar 

  3. Manning AK, Hivert MF, Scott RA, et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012;44:659–69.

    Article  PubMed  CAS  Google Scholar 

  4. Strawbridge RJ, Dupuis J, Prokopenko I, et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes. 2011;60:2624–34.

    Article  PubMed  CAS  Google Scholar 

  5. Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89.

    Article  PubMed  CAS  Google Scholar 

  6. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.

    Article  PubMed  CAS  Google Scholar 

  7. Watanabe RM. The genetics of insulin resistance: where’s Waldo? Curr Diab Rep. 2010;10:476–84.

    Article  PubMed  CAS  Google Scholar 

  8. Ntzani EE, Kavvoura FK. Genetic risk factors for type 2 diabetes: insights from the emerging genomic evidence. Curr Vasc Pharmacol. 2012;10:147–55.

    Article  PubMed  CAS  Google Scholar 

  9. Curhan GC, Willett WC, Rimm EB, et al. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation. 1996;94:3246–50.

    Article  PubMed  CAS  Google Scholar 

  10. Godfrey KM, Barker DJ. Fetal programming and adult health. Public Health Nutr. 2001;4:611–24.

    Article  PubMed  CAS  Google Scholar 

  11. Hales CN, Barker DJ, Clark PM, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–22.

    Article  PubMed  CAS  Google Scholar 

  12. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.

    Article  PubMed  CAS  Google Scholar 

  13. Harder T, Rodekamp E, Schellong K, et al. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007;165:849–57.

    Article  PubMed  Google Scholar 

  14. Osmond C, Barker DJ, Winter PD, et al. Early growth and death from cardiovascular disease in women. BMJ. 1993;307:1519–24.

    Article  PubMed  CAS  Google Scholar 

  15. Barker DJ. A new model for the origins of chronic disease. Med Health Care Philos. 2001;4:31–5.

    Article  PubMed  CAS  Google Scholar 

  16. Das UG, Sysyn GD. Abnormal fetal growth: intrauterine growth retardation, small for gestational age, large for gestational age. Pediatr Clin North Am. 2004;51:639–54. viii.

    Article  PubMed  Google Scholar 

  17. Seki Y, Williams L, Vuguin PM, Charron MJ. Minireview: epigenetic programming of diabetes and obesity: animal models. Endocrinology. 2012;153:1031–8.

    Article  PubMed  CAS  Google Scholar 

  18. Gabory A, Attig L, Junien C. Developmental programming and epigenetics. Am J Clin Nutr. 2011;94:1943S–52.

    Article  PubMed  CAS  Google Scholar 

  19. Tobi EW, Lumey LH, Talens RP, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009;18:4046–53.

    Article  PubMed  CAS  Google Scholar 

  20. Heijmans BT, Tobi EW, Lumey LH, Slagboom PE. The epigenome: archive of the prenatal environment. Epigenetics. 2009;4:526–31.

    Article  PubMed  CAS  Google Scholar 

  21. Tobi EW, Heijmans BT, Kremer D, et al. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics. 2011;6:171–6.

    Article  PubMed  CAS  Google Scholar 

  22. Kocaefe C, Balci D, Hayta BB, Can A. Reprogramming of human umbilical cord stromal mesenchymal stem cells for myogenic differentiation and muscle repair. Stem Cell Rev. 2010;6:512–22.

    Article  PubMed  Google Scholar 

  23. Gemma C, Sookoian S, Alvarinas J, et al. Maternal pregestational BMI is associated with methylation of the PPARGC1A promoter in newborns. Obesity (Silver Spring). 2009;17:1032–9.

    Article  CAS  Google Scholar 

  24. Burgueno AL, Cabrerizo R, Gonzales MN, et al.: Maternal high-fat intake during pregnancy programs metabolic-syndrome-related phenotypes through liver mitochondrial DNA copy number and transcriptional activity of liver PPARGC1A. J Nutr Biochem. 2012; E Pub.

  25. Gemma C, Sookoian S, Alvarinas J, et al. Mitochondrial DNA depletion in small- and large-for-gestational-age newborns. Obesity (Silver Spring). 2006;14:2193–9.

    Article  CAS  Google Scholar 

  26. Bouchard L, Hivert MF, Guay SP, et al. Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose concentration. Diabetes. 2012;61:1272–80.

    Article  PubMed  CAS  Google Scholar 

  27. Bouchard L, Thibault S, Guay SP, et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care. 2010;33:2436–41.

    Article  PubMed  CAS  Google Scholar 

  28. Tosh DN, Fu Q, Callaway CW, et al. Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1023–9.

    Article  PubMed  CAS  Google Scholar 

  29. Sharif J, Nakamura M, Ito T, et al. Food restriction in pregnant mice can induce changes in histone modifications and suppress gene expression in fetus. Nucleic Acids Symp Ser (Oxf). 2007;125–126.

  30. Strakovsky RS, Zhang X, Zhou D, Pan YX. Gestational high fat diet programs hepatic phosphoenolpyruvate carboxykinase gene expression and histone modification in neonatal offspring rats. J Physiol. 2011;589:2707–17.

    Article  PubMed  CAS  Google Scholar 

  31. Aagaard-Tillery KM, Grove K, Bishop J, et al. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol. 2008;41:91–102.

    Article  PubMed  CAS  Google Scholar 

  32. • Suter M, Bocock P, Showalter L, et al. Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J. 2011;25:714–26. This study highlights the efect of maternal programming on circadian gene transcription.

    Article  PubMed  CAS  Google Scholar 

  33. Fu Q, Yu X, Callaway CW, et al. Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J. 2009;23:2438–49.

    Article  PubMed  CAS  Google Scholar 

  34. Kotronen A, Yki-Jarvinen H. Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28:27–38.

    Article  PubMed  CAS  Google Scholar 

  35. Fabbrini E, Magkos F, Mohammed BS, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A. 2009;106:15430–5.

    Article  PubMed  CAS  Google Scholar 

  36. •• Sookoian S, Rosselli MS, Gemma C, et al. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology. 2010;52:1992–2000. This study shows the role of the liver epigenome on the regulation of peripheral IR.

    Article  PubMed  CAS  Google Scholar 

  37. Gianotti TF, Sookoian S, Dieuzeide G, et al. A decreased mitochondrial DNA content is related to insulin resistance in adolescents. Obesity (Silver Spring). 2008;16:1591–5.

    Article  CAS  Google Scholar 

  38. Nisoli E, Clementi E, Carruba MO, Moncada S. Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res. 2007;100:795–806.

    Article  PubMed  CAS  Google Scholar 

  39. Shenouda SM, Widlansky ME, Chen K, et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation. 2011;124:444–53.

    Article  PubMed  CAS  Google Scholar 

  40. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944–50.

    Article  PubMed  CAS  Google Scholar 

  41. Liang P, Hughes V, Fukagawa NK. Increased prevalence of mitochondrial DNA deletions in skeletal muscle of older individuals with impaired glucose tolerance: possible marker of glycemic stress. Diabetes. 1997;46:920–3.

    Article  PubMed  CAS  Google Scholar 

  42. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384–7.

    Article  PubMed  CAS  Google Scholar 

  43. Mogensen M, Sahlin K, Fernstrom M, et al. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 2007.

  44. •• Shock LS, Thakkar PV, Peterson EJ, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A. 2011;108:3630–5. This is the first report about the role of DNMT1 in mitochondrial DNA methylation.

    Article  PubMed  CAS  Google Scholar 

  45. •• Pirola CJ, Fernandez GT, Burgueno AL, et al. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut. 2012; E pub. This is the first report about the impact of liver mitochondrial DNA methylation on the regulation of complex diseases, including intermediate phenotypes of metabolic syndrome.

  46. Sookoian S, Pirola CJ. Non-alcoholic fatty liver disease is strongly associated with carotid atherosclerosis: a systematic review. J Hepatol. 2008;49:600–7.

    Article  PubMed  Google Scholar 

  47. Tabak AG, Herder C, Rathmann W, et al. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379:2279–90.

    Article  PubMed  Google Scholar 

  48. • Gaikwad AB, Gupta J, Tikoo K. Epigenetic changes and alteration of Fbn1 and Col3A1 gene expression under hyperglycaemic and hyperinsulinaemic conditions. Biochem J. 2010;432:333–41. This study highlights the importance of epigenetic changes in modulation of glycemic memory.

    Article  PubMed  CAS  Google Scholar 

  49. Gupta J, Tikoo K. Involvement of insulin-induced reversible chromatin remodeling in altering the expression of oxidative stress-responsive genes under hyperglycemia in 3T3-L1 preadipocytes. Gene. 2012;504:181–91.

    Article  PubMed  CAS  Google Scholar 

  50. • Tewari S, Zhong Q, Santos JM, Kowluru RA. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2012;53:4881–8. This study highlights the importance of epigenetic changes in modulation of glycemic memory.

    Article  PubMed  CAS  Google Scholar 

  51. Perrone L, Devi TS, Hosoya K, et al. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J Cell Physiol. 2009;221:262–72.

    Article  PubMed  CAS  Google Scholar 

  52. Pirola L, Balcerczyk A, Tothill RW, et al. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Res. 2011;21:1601–15.

    Article  PubMed  CAS  Google Scholar 

  53. Okabe J, Orlowski C, Balcerczyk A, et al. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circ Res. 2012;110:1067–76.

    Article  PubMed  CAS  Google Scholar 

  54. Gemma C, Sookoian S, Dieuzeide G, et al. Methylation of TFAM gene promoter in peripheral white blood cells is associated with insulin resistance in adolescents. Mol Genet Metab. 2010;100:83–7.

    Article  PubMed  CAS  Google Scholar 

  55. Yang BT, Dayeh TA, Kirkpatrick CL, et al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia. 2011;54:360–7.

    Article  PubMed  CAS  Google Scholar 

  56. El-Osta A. Glycemic memory. Curr Opin Lipidol. 2012;23:24–9.

    Article  PubMed  CAS  Google Scholar 

  57. Cooper ME, El-Osta A. Epigenetics: mechanisms and implications for diabetic complications. Circ Res. 2010;107:1403–13.

    Article  PubMed  CAS  Google Scholar 

  58. Olsen AS, Sarras Jr MP, Leontovich A, Intine RV. Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes. 2012;61:485–91.

    Article  PubMed  CAS  Google Scholar 

  59. Sookoian S, Pirola CJ. Metabolic syndrome: from the genetics to the pathophysiology. Curr Hypertens Rep. 2011;13:149–57.

    Article  PubMed  CAS  Google Scholar 

  60. Li T, Francl JM, Boehme S, et al. Glucose and insulin induction of bile acid synthesis: mechanisms and implication in diabetes and obesity. J Biol Chem. 2012;287:1861–73.

    Article  PubMed  CAS  Google Scholar 

  61. Staels B, Handelsman Y, Fonseca V. Bile acid sequestrants for lipid and glucose control. Curr Diab Rep. 2010;10:70–7.

    Article  PubMed  CAS  Google Scholar 

  62. Sookoian S, Gemma C, Pirola CJ. Influence of hepatocyte nuclear factor 4alpha (HNF4alpha) gene variants on the risk of type 2 diabetes: a meta-analysis in 49,577 individuals. Mol Genet Metab. 2010;99:80–9.

    Article  PubMed  CAS  Google Scholar 

  63. Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–77.

    Article  PubMed  CAS  Google Scholar 

  64. Sookoian S, Pirola CJ. Genetic determinants of acquired cholestasis: a systems biology approach. Front Biosci. 2012;17:206–20.

    Article  PubMed  CAS  Google Scholar 

  65. Sookoian S, Gemma C, Fernandez GT, et al. Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation. J Intern Med. 2007;261:285–92.

    Article  PubMed  CAS  Google Scholar 

  66. Fujino Y, Iso H, Tamakoshi A, et al. A prospective cohort study of shift work and risk of ischemic heart disease in Japanese male workers. Am J Epidemiol. 2006;164:128–35.

    Article  PubMed  Google Scholar 

  67. Haupt CM, Alte D, Dorr M, et al.: The relation of exposure to shift work with atherosclerosis and myocardial infarction in a general population. Atherosclerosis. 2008.

  68. Hermansson J, Gillander GK, Karlsson B, et al. Ischemic stroke and shift work. Scand J Work Environ Health. 2007;33:435–9.

    Article  PubMed  Google Scholar 

  69. Karlsson B, Knutsson A, Lindahl B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med. 2001;58:747–52.

    Article  PubMed  CAS  Google Scholar 

  70. Karlsson BH, Knutsson AK, Lindahl BO, Alfredsson LS. Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study. Int Arch Occup Environ Health. 2003;76:424–30.

    Article  PubMed  Google Scholar 

  71. Sahar S, Sassone-Corsi P. Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol Metab. 2012;23:1–8.

    Article  PubMed  CAS  Google Scholar 

  72. Sookoian S, Castano G, Gemma C, et al. Common genetic variations in CLOCK transcription factor are associated with nonalcoholic fatty liver disease. World J Gastroenterol. 2007;13:4242–8.

    PubMed  CAS  Google Scholar 

  73. Sookoian S, Gemma C, Gianotti TF, et al. Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am J Clin Nutr. 2008;87:1606–15.

    PubMed  CAS  Google Scholar 

  74. Sookoian S, Gianotti TF, Burgueno A, Pirola CJ. Gene-gene interaction between serotonin transporter (SLC6A4) and CLOCK modulates the risk of metabolic syndrome in rotating shiftworkers. Chronobiol Int. 2010;27:1202–18.

    Article  PubMed  CAS  Google Scholar 

  75. Garaulet M, Lee YC, Shen J, et al. CLOCK genetic variation and metabolic syndrome risk: modulation by monounsaturated fatty acids. Am J Clin Nutr. 2009;90:1466–75.

    Article  PubMed  CAS  Google Scholar 

  76. Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell. 2006;125:497–508.

    Article  PubMed  CAS  Google Scholar 

  77. Gallou-Kabani C, Vige A, Junien C. Lifelong circadian and epigenetic drifts in metabolic syndrome. Epigenetics. 2007;2:137–46.

    Article  PubMed  Google Scholar 

  78. Masri S, Zocchi L, Katada S, et al. The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control. Ann N Y Acad Sci. 2012; E pub.

  79. Sassone-Corsi P. Minireview: NAD+, a circadian metabolite with an epigenetic twist. Endocrinology. 2012;153:1–5.

    Article  PubMed  CAS  Google Scholar 

  80. Zhu Y, Stevens RG, Hoffman AE, et al. Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int. 2011;28:852–61.

    Article  PubMed  CAS  Google Scholar 

  81. Sun Z, Feng D, Everett LJ, et al. Circadian epigenomic remodeling and hepatic lipogenesis: lessons from HDAC3. Cold Spring Harb Symp Quant Biol. 2011;76:49–55.

    Article  PubMed  CAS  Google Scholar 

  82. Burgueno AL, Fernandez GT, Gonzales MN, et al. Cardiovascular disease is associated with high fat diet-induced liver damage and upregulation of hepatic expression of hypoxia-inducible factor 1 alpha in a rat model. Clin Sci (Lond). 2012; E pub.

  83. Sun Z, Miller RA, Patel RT, et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat Med. 2012;18:934–42.

    Article  PubMed  CAS  Google Scholar 

  84. Cheng K, Ho K, Stokes R, et al. Hypoxia-inducible factor-1alpha regulates beta cell function in mouse and human islets. J Clin Invest. 2010;120:2171–83.

    Article  PubMed  CAS  Google Scholar 

  85. Jeong JW, Bae MK, Ahn MY, et al. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell. 2002;111:709–20.

    Article  PubMed  CAS  Google Scholar 

  86. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127:1109–22.

    Article  PubMed  CAS  Google Scholar 

  87. Liu C, Li S, Liu T, et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature. 2007;447:477–81.

    Article  PubMed  CAS  Google Scholar 

  88. Ghorbel MT, Coulson JM, Murphy D. Cross-talk between hypoxic and circadian pathways: cooperative roles for hypoxia-inducible factor 1alpha and CLOCK in transcriptional activation of the vasopressin gene. Mol Cell Neurosci. 2003;22:396–404.

    Article  PubMed  CAS  Google Scholar 

  89. Chilov D, Hofer T, Bauer C, et al. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J. 2001;15:2613–22.

    Article  PubMed  CAS  Google Scholar 

  90. •• Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73. This is the first report about the impact of expression of PPARGC1A on oxidative phosphorylation in human diabetic muscle and the modulation IR phenotype.

    Article  PubMed  CAS  Google Scholar 

  91. Verrotti A, D’Egidio C, Mohn A, et al. Weight gain following treatment with valproic acid: pathogenetic mechanisms and clinical implications. Obes Rev. 2011;12:e32–43.

    Article  PubMed  CAS  Google Scholar 

  92. Gottlicher M. Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann Hematol. 2004;83 Suppl 1:S91–2.

    PubMed  Google Scholar 

Download references

Acknowledgment

This study was partially supported by Grants PICT 2008–1521 and PICT 2010–0441 (Agencia Nacional de Promoción Científica y Tecnológica) and UBACYT CM04 (Universidad de Buenos Aires). S.S. and C.J.P. belong to Consejo Nacional de Investigaciones Científicas (CONICET).

Disclosure

Conflicts of interest: S. Sookoian: none; C.J. Pirola: has board membership with Merck Sharp and Dohme, has given expert testimony for Merck Sharp and Dohme, and has received grant support and honoraria from Merck Sharp and Dohme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Sookoian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sookoian, S., Pirola, C.J. Epigenetics of Insulin Resistance: An Emerging Field in Translational Medicine. Curr Diab Rep 13, 229–237 (2013). https://doi.org/10.1007/s11892-012-0361-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0361-9

Keywords

Navigation