Skip to main content
Log in

HDL as a Causal Factor in Atherosclerosis: Insights from Human Genetics

  • Genetics (A. Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

High-density lipoprotein cholesterol (HDL-C) levels are inversely related to risk of atherosclerotic cardiovascular disease (ASCVD). However, the simplistic assumption that HDL-C levels directly and causally impact atherogenesis has been challenged in recent years. The purpose of this article is to review the current state of knowledge regarding genetically determined HDL-C levels and ASCVD risk and determine what insight these studies provide into the causal relationship between HDL and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barr DP, Russ EM, Eder HA. Protein-lipid relationships in human plasma. II. In atherosclerosis and related conditions. Am J Med. 1951;11(4):480–93.

    Article  CAS  PubMed  Google Scholar 

  2. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977;62(5):707–14.

    Article  CAS  PubMed  Google Scholar 

  3. Nicholls SJ, Tuzcu EM, Sipahi I, Schoenhagen P, Crowe T, Kapadia S, et al. Relationship between atheroma regression and change in lumen size after infusion of apolipoprotein A-I Milano. J Am Coll Cardiol. 2006;47(5):992–7. doi:10.1016/j.jacc.2005.11.040.

    Article  CAS  PubMed  Google Scholar 

  4. Plump AS, Scott CJ, Breslow JL. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A. 1994;91(20):9607–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miller GJ, Miller NE. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet. 1975;1(7897):16–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ng DS, Wong NC, Hegele RA. HDL—is it too big to fail? Nat Rev Endocrinol. 2013;9(5):308–12. doi:10.1038/nrendo.2012.238.

    Article  CAS  PubMed  Google Scholar 

  7. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22. doi:10.1056/NEJMoa0706628.

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99. doi:10.1056/NEJMoa1206797.

    Article  CAS  PubMed  Google Scholar 

  9. Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67. doi:10.1056/NEJMoa1107579.

    Article  PubMed  Google Scholar 

  10. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J. 2013;34(17):1279–91. doi:10.1093/eurheartj/eht055.

  11. Group HTC, Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–12. doi:10.1056/NEJMoa1300955.

    Article  Google Scholar 

  12. Keene D, Price C, Shun-Shin MJ, Francis DP. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117 411 patients. BMJ. 2014;349:g4379. doi:10.1136/bmj.g4379.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80. doi:10.1016/S0140-6736(12)60312-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haase CL, Tybjaerg-Hansen A, Grande P, Frikke-Schmidt R. Genetically elevated apolipoprotein A-I, high-density lipoprotein cholesterol levels, and risk of ischemic heart disease. J Clin Endocrinol Metab. 2010;95(12):E500–10. doi:10.1210/jc.2010-0450.

    Article  CAS  PubMed  Google Scholar 

  15. Haase CL, Tybjaerg-Hansen A, Qayyum AA, Schou J, Nordestgaard BG, Frikke-Schmidt R. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab. 2012;97(2):E248–56. doi:10.1210/jc.2011-1846.

    Article  CAS  PubMed  Google Scholar 

  16. Brunham LR, Hayden MR. Human genetics of HDL: insight into particle metabolism and function. Prog Lipid Res. 2015;58:14–25. doi:10.1016/j.plipres.2015.01.001.

    Article  CAS  PubMed  Google Scholar 

  17. McKusick VA. Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet. 2007;80(4):588–604. doi:10.1086/514346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schaefer EJ, Zech LA, Schwartz DE, Brewer Jr HB. Coronary heart disease prevalence and other clinical features in familial high-density lipoprotein deficiency (Tangier disease). Ann Intern Med. 1980;93(2):261–6.

    Article  CAS  PubMed  Google Scholar 

  19. Serfaty-Lacrosniere C, Civeira F, Lanzberg A, Isaia P, Berg J, Janus ED, et al. Homozygous Tangier disease and cardiovascular disease. Atherosclerosis. 1994;107(1):85–98.

    Article  CAS  PubMed  Google Scholar 

  20. Santos RD, Asztalos BF, Martinez LR, Miname MH, Polisecki E, Schaefer EJ. Clinical presentation, laboratory values, and coronary heart disease risk in marked high-density lipoprotein-deficiency states. J Clin Lipidol. 2008;2(4):237–47. doi:10.1016/j.jacl.2008.06.002.

    Article  PubMed  Google Scholar 

  21. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34(45):3478–90a. doi:10.1093/eurheartj/eht273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hovingh GK, Kuivenhoven JA, Bisoendial RJ, Groen AK, van Dam M, van Tol A, et al. HDL deficiency and atherosclerosis: lessons from Tangier disease. J Intern Med. 2004;255(2):299–301.

    Article  CAS  PubMed  Google Scholar 

  23. Singaraja RR, Brunham LR, Visscher H, Kastelein JJ, Hayden MR. Efflux and atherosclerosis: the clinical and biochemical impact of variations in the ABCA1 gene. Arterioscler Thromb Vasc Biol. 2003;23(8):1322–32. doi:10.1161/01.ATV.0000078520.89539.77.

    Article  CAS  PubMed  Google Scholar 

  24. Clee SM, Kastelein JJ, van Dam M, Marcil M, Roomp K, Zwarts KY, et al. Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes. J Clin Invest. 2000;106(10):1263–70. doi:10.1172/JCI10727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frikke-Schmidt R, Nordestgaard BG, Schnohr P, Steffensen R, Tybjaerg-Hansen A. Mutation in ABCA1 predicted risk of ischemic heart disease in the Copenhagen City Heart Study Population. J Am Coll Cardiol. 2005;46(8):1516–20. doi:10.1016/j.jacc.2005.06.066.

    Article  CAS  PubMed  Google Scholar 

  26. van Dam MJ, de Groot E, Clee SM, Hovingh GK, Roelants R, Brooks-Wilson A, et al. Association between increased arterial-wall thickness and impairment in ABCA1-driven cholesterol efflux: an observational study. Lancet. 2002;359(9300):37–42. doi:10.1016/S0140-6736(02)07277-X.

    Article  PubMed  Google Scholar 

  27. Bochem AE, van Wijk DF, Holleboom AG, Duivenvoorden R, Motazacker MM, Dallinga-Thie GM, et al. ABCA1 mutation carriers with low high-density lipoprotein cholesterol are characterized by a larger atherosclerotic burden. Eur Heart J. 2013;34(4):286–91. doi:10.1093/eurheartj/ehs376.

    Article  CAS  PubMed  Google Scholar 

  28. Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Steffensen R, Tybjaerg-Hansen A. Genetic variation in ABCA1 predicts ischemic heart disease in the general population. Arterioscler Thromb Vasc Biol. 2008;28(1):180–6. doi:10.1161/ATVBAHA.107.153858.

    Article  CAS  PubMed  Google Scholar 

  29. Norum RA, Lakier JB, Goldstein S, Angel A, Goldberg RB, Block WD, et al. Familial deficiency of apolipoproteins A-I and C-III and precocious coronary-artery disease. N Engl J Med. 1982;306(25):1513–9. doi:10.1056/NEJM198206243062503.

    Article  CAS  PubMed  Google Scholar 

  30. Schaefer EJ, Heaton WH, Wetzel MG, Brewer Jr HB. Plasma apolipoprotein A-1 absence associated with a marked reduction of high density lipoproteins and premature coronary artery disease. Arteriosclerosis. 1982;2(1):16–26.

    Article  CAS  PubMed  Google Scholar 

  31. Calabresi L, Simonelli S, Gomaraschi M, Franceschini G. Genetic lecithin:cholesterol acyltransferase deficiency and cardiovascular disease. Atherosclerosis. 2012;222(2):299–306. doi:10.1016/j.atherosclerosis.2011.11.034.

    Article  CAS  PubMed  Google Scholar 

  32. Kunnen S, Van Eck M. Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res. 2012;53(9):1783–99. doi:10.1194/jlr.R024513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carlson LA. Fish eye disease: a new familial condition with massive corneal opacities and dyslipoproteinaemia. Eur J Clin Invest. 1982;12(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  34. Duivenvoorden R, Holleboom AG, van den Bogaard B, Nederveen AJ, de Groot E, Hutten BA, et al. Carriers of lecithin cholesterol acyltransferase gene mutations have accelerated atherogenesis as assessed by carotid 3.0-T magnetic resonance imaging [corrected]. J Am Coll Cardiol. 2011;58(24):2481–7. doi:10.1016/j.jacc.2010.11.092.

    Article  CAS  PubMed  Google Scholar 

  35. Calabresi L, Baldassarre D, Simonelli S, Gomaraschi M, Amato M, Castelnuovo S, et al. Plasma lecithin:cholesterol acyltransferase and carotid intima-media thickness in European individuals at high cardiovascular risk. J Lipid Res. 2011;52(8):1569–74. doi:10.1194/jlr.P014977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hovingh GK, Hutten BA, Holleboom AG, Petersen W, Rol P, Stalenhoef A, et al. Compromised LCAT function is associated with increased atherosclerosis. Circulation. 2005;112(6):879–84. doi:10.1161/CIRCULATIONAHA.105.540427.

    Article  CAS  PubMed  Google Scholar 

  37. Global Lipids Genetics C, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83. doi:10.1038/ng.2797.

    Article  Google Scholar 

  38. Holmes MV, Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson CP, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J. 2015;36(9):539–50. doi:10.1093/eurheartj/eht571.

    Article  PubMed  Google Scholar 

  39. Johannsen TH, Kamstrup PR, Andersen RV, Jensen GB, Sillesen H, Tybjaerg-Hansen A, et al. Hepatic lipase, genetically elevated high-density lipoprotein, and risk of ischemic cardiovascular disease. J Clin Endocrinol Metab. 2009;94(4):1264–73. doi:10.1210/jc.2008-1342.

    Article  CAS  PubMed  Google Scholar 

  40. • Helgadottir A, Gretarsdottir S, Thorleifsson G, Hjartarson E, Sigurdsson A, Magnusdottir A, et al. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat Genet. 2016;48(6):634–9. doi:10.1038/ng.3561. This study examined the role of rare variants on blood lipids and coronary disease risk in a very large cohort of patients. It identified a rare coding variant in APOA1 that raises HDL-C and reduced risk of coronary disease by 26%.

    Article  CAS  PubMed  Google Scholar 

  41. Frikke-Schmidt R, Nordestgaard BG, Stene MC, Sethi AA, Remaley AT, Schnohr P, et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008;299(21):2524–32. doi:10.1001/jama.299.21.2524.

    Article  CAS  PubMed  Google Scholar 

  42. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45(11):1345–52. doi:10.1038/ng.2795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Niu W, Qi Y. Circulating cholesteryl ester transfer protein and coronary heart disease: mendelian randomization meta-analysis. Circ Cardiovasc Genet. 2015;8(1):114–21. doi:10.1161/CIRCGENETICS.114.000748.

    Article  CAS  PubMed  Google Scholar 

  44. Johannsen TH, Frikke-Schmidt R, Schou J, Nordestgaard BG, Tybjaerg-Hansen A. Genetic inhibition of CETP, ischemic vascular disease and mortality, and possible adverse effects. J Am Coll Cardiol. 2012;60(20):2041–8. doi:10.1016/j.jacc.2012.07.045.

    Article  CAS  PubMed  Google Scholar 

  45. •• Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Millar JS, Cuchel M, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science. 2016;351(6278):1166–71. doi:10.1126/science.aad3517. This study leverages the power of large cohorts of genotyped patients and provides one of the most convincing examples of a rare genetic variant in an HDL-related gene that impacts risk of coronary disease. Unexpectedly, this genetic variant increases HDL-C levels and increases risk of coronary disease. This is explained by the fact that this variant impairs hepatic HDL uptake, a key step in reverse cholesterol transport.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996;271(5248):518–20.

    Article  CAS  PubMed  Google Scholar 

  47. Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A. 1997;94(23):12610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trigatti B, Rayburn H, Vinals M, Braun A, Miettinen H, Penman M, et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A. 1999;96(16):9322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van Eck M, Twisk J, Hoekstra M, Van Rij BT, Van der Lans CA, Bos IS, et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J Biol Chem. 2003;278(26):23699–705. doi:10.1074/jbc.M211233200.

    Article  PubMed  Google Scholar 

  50. Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest. 2005;115(10):2870–4. doi:10.1172/JCI25327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vergeer M, Korporaal SJ, Franssen R, Meurs I, Out R, Hovingh GK, et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med. 2011;364(2):136–45. doi:10.1056/NEJMoa0907687.

    Article  CAS  PubMed  Google Scholar 

  52. Brunham LR, Tietjen I, Bochem AE, Singaraja RR, Franchini PL, Radomski C, et al. Novel mutations in scavenger receptor BI associated with high HDL cholesterol in humans. Clin Genet. 2011;79(6):575–81. doi:10.1111/j.1399-0004.2011.01682.x.

    Article  CAS  PubMed  Google Scholar 

  53. Haase CL, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Population-based resequencing of APOA1 in 10,330 individuals: spectrum of genetic variation, phenotype, and comparison with extreme phenotype approach. PLoS Genet. 2012;8(11):e1003063. doi:10.1371/journal.pgen.1003063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schaefer EJ, Brousseau ME, Diffenderfer MR, Cohn JS, Welty FK, O’Connor Jr J, et al. Cholesterol and apolipoprotein B metabolism in Tangier disease. Atherosclerosis. 2001;159(1):231–6.

    Article  CAS  PubMed  Google Scholar 

  55. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014. doi:10.1056/NEJMoa1409065.

    PubMed  PubMed Central  Google Scholar 

  56. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35. doi:10.1056/NEJMoa1001689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

LRB is supported by a Heart & Stroke Foundation of Canada National New Investigator Award and is a Canadian Institute of Health Research New Investigator. His laboratory is supported by an Emerging Research Leaders Initiative grant from the Heart & Stroke Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam R. Brunham.

Ethics declarations

Conflict of Interest

Liam R. Brunham declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunham, L.R. HDL as a Causal Factor in Atherosclerosis: Insights from Human Genetics. Curr Atheroscler Rep 18, 71 (2016). https://doi.org/10.1007/s11883-016-0623-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-016-0623-0

Keywords

Navigation