Skip to main content

Advertisement

Log in

Do Bugs Control Our Fate? The Influence of the Microbiome on Autoimmunity

  • AUTOIMMUNITY (TK TARRANT, SECTION EDITOR)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Autoimmune disease has traditionally been thought to be due to the impact of environmental factors on genetically susceptible individuals causing immune dysregulation and loss of tolerance. However, recent literature has highlighted the importance of the microbiome, (a collective genome of microorganisms in a given niche) in immune homeostasis. Increasingly, it has been recognized that disruptions in the commensal microflora may lead to immune dysfunction and autoimmunity. This review summarizes recent studies investigating the interplay between the microbiome and immune-mediated organ-specific diseases. In particular, we review new findings on the role of the microbiome in inflammatory bowel disease, celiac disease, psoriasis, rheumatoid arthritis, type I diabetes, and multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Eberl G. A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol. 2010;3:450–60.

    Article  PubMed  CAS  Google Scholar 

  2. •• Mathis D, and Benoist C. Microbiota and autoimmune disease: the hosted self. Cell Host. Microbe. 2011;10: 297–301. Excellent summary of the immune system and microbiome interactions, and also mouse studies examining the role of microbiota in autoimmune disease.

    Article  PubMed  CAS  Google Scholar 

  3. Feng T, Elson CO. Adaptive immunity in the host-microbiota dialog. Mucosal Immunol. 2011;4:15–21.

    Article  PubMed  CAS  Google Scholar 

  4. •• Atarashi K, and Honda K. Microbiota in autoimmunity and tolerance. Curr. Opin. Immunol. 2011;23: 761–768. In depth review of how the immune system and the microbiome influence each other particularly the development of immune regulatory responses.

    Article  PubMed  CAS  Google Scholar 

  5. • Honda K, and Littman DR. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 2012;30: 759–795. Comprehensive review on microbiota interactions with the innate and adaptive immune arms of the immune system.

    Article  PubMed  CAS  Google Scholar 

  6. Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe. 2011;10:311–23.

    Article  PubMed  CAS  Google Scholar 

  7. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9:279–90.

    Article  PubMed  CAS  Google Scholar 

  8. Fujimura KE, Slusher NA, Cabana MD, Lynch SV. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther. 2010;8:435–54.

    Article  PubMed  Google Scholar 

  9. Bevins CL, Salzman NH. The potter’s wheel: the host’s role in sculpting its microbiota. Cell Mol Life Sci. 2011;68:3675–85.

    Article  PubMed  CAS  Google Scholar 

  10. Peterson DA, Cardona RA. Specificity of the adaptive immune response to the gut microbiota. Adv Immunol. 2010;107:71–107.

    Article  PubMed  CAS  Google Scholar 

  11. Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK. Host-bacterial symbiosis in health and disease. Adv Immunol. 2010;107:243–74.

    Article  PubMed  CAS  Google Scholar 

  12. Molloy MJ, Bouladoux N, Belkaid Y. Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol. 2012;24:58–66.

    Article  PubMed  CAS  Google Scholar 

  13. Jarchum I, Pamer EG. Regulation of innate and adaptive immunity by the commensal microbiota. Curr Opin Immunol. 2011;23:353–60.

    Article  PubMed  CAS  Google Scholar 

  14. Shanahan F, Bernstein CN. The evolving epidemiology of inflammatory bowel disease. Curr Opin Gastroenterol. 2009;25:301–5.

    Article  PubMed  Google Scholar 

  15. Gonzalez-Navajas JM, Fine S, Law J, Datta SK, Nguyen KP, Yu M, Corr M, Katakura K, Eckman L, Lee J, et al. TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice. J Clin Invest. 2010;120:570–81.

    Article  PubMed  CAS  Google Scholar 

  16. Tsianos EV, Katsanos KH, Tsianos VE. Role of genetics in the diagnosis and prognosis of Crohn’s disease. World J Gastroenterol. 2012;18:105–18.

    Article  PubMed  CAS  Google Scholar 

  17. Hedl M, Abraham C. Secretory mediators regulate Nod2-induced tolerance in human macrophages. Gastroenterology. 2011;140:231–41.

    Article  PubMed  CAS  Google Scholar 

  18. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, Zhu W, Sartor RB, Boedeker EC, Harpaz N, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17:179–84.

    Article  PubMed  Google Scholar 

  19. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le BL, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2010;11:55–62.

    Article  PubMed  CAS  Google Scholar 

  20. Rehman A, Sina C, Gavrilova O, Hasler R, Ott S, Baines JF, Schreiber S, Rosenstiel P. Nod2 is essential for temporal development of intestinal microbial communities. Gut. 2011;60:1354–62.

    Article  PubMed  CAS  Google Scholar 

  21. Papatriantafyllou M. Mucosal immunology: inflammasome shapes the microbiota. Nat Rev Immunol. 2011;11:439.

    Article  PubMed  CAS  Google Scholar 

  22. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 2010;32:379–91.

    Article  PubMed  CAS  Google Scholar 

  23. Zaki MH, Lamkanfi M, Kanneganti TD. The Nlrp3 inflammasome: contributions to intestinal homeostasis. Trends Immunol. 2011;32:171–9.

    Article  PubMed  CAS  Google Scholar 

  24. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145:745–57.

    Article  PubMed  CAS  Google Scholar 

  25. Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert R, Baron RM, Kasper DL, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–93.

    Article  PubMed  CAS  Google Scholar 

  26. Rahman MK, Midtling EH, Svingen PA, Xiong Y, Bell MP, Tung J, Smyrk T, Egan LJ, Faubion Jr WA. The pathogen recognition receptor NOD2 regulates human FOXP3+ T cell survival. J Immunol. 2010;184:7247–56.

    Article  PubMed  CAS  Google Scholar 

  27. Gutierrez A, Holler E, Zapater P, Sempere L, Jover R, Perez-Mateo M, Schoelmerich J, Such J, Wiest R, Frances R. Antimicrobial peptide response to blood translocation of bacterial DNA in Crohn’s disease is affected by NOD2/CARD15 genotype. Inflamm Bowel Dis. 2011;17:1641–50.

    Article  PubMed  Google Scholar 

  28. Veiga P, Gallini CA, Beal C, Michaud M, Delaney ML, DuBois A, Khlebnikov A, van Hylckama Vlieg JE, Punit S, Glickman JN, et al. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl. Acad. Sci. U. S. A. 2010;107:18132–7.

    CAS  Google Scholar 

  29. Macho FE, Valenti V, Rockel C, Hermann C, Pot B, Boneca IG, Grangette C. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut. 2011;60:1050–9.

    Article  Google Scholar 

  30. Jeon SG, Kayama H, Ueda Y, Takahashi T, Asahara T, Tsuji H, Tsuji NM, Kiyono H, Ma JS, Kusu T, et al. Probiotic Bifidobacterium breve Induces IL-10-Producing Tr1 Cells in the Colon. PLoS Pathog. 2012;8:e1002714.

    Article  PubMed  CAS  Google Scholar 

  31. Wildt S, Nordgaard I, Hansen U, Brockmann E, Rumessen JJ. A randomised double-blind placebo-controlled trial with Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 for maintenance of remission in ulcerative colitis. J Crohns Colitis. 2011;5:115–21.

    Article  PubMed  Google Scholar 

  32. Naidoo K, Gordon M, Fagbemi AO, Thomas AG, and Akobeng AK. Probiotics for maintenance of remission in ulcerative colitis. Cochrane. Database. Syst. Rev. 2011;CD007443.

  33. •• Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, Brostoff J, Parkhill J, Dougan G, and Petrovska L. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11: 7. Demonstrates microbiota differences in mucosal IBD patients compared to controls, and discusses concept that such differences may be a result of dysbiosis rather than causal of disease.

    Article  PubMed  Google Scholar 

  34. Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, Punit S, Karlsson M, Bry L, Glickman JN, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 2010;8:292–300.

    Article  PubMed  CAS  Google Scholar 

  35. Bloom SM, Bijanki VN, Nava GM, Sun L, Malvin NP, Donermeyer DL, Dunne Jr WM, Allen PM, Stappenbeck TS. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe. 2011;9:390–403.

    Article  PubMed  CAS  Google Scholar 

  36. Papa E, Docktor M, Smillie C, Weber S, Preheim SP, Gevers D, Giannoukos G, Ciulla D, Tabbaa D, Ingram J, et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS One. 2012;7:e39242.

    Article  PubMed  CAS  Google Scholar 

  37. Docktor MJ, Paster BJ, Abramowicz S, Ingram J, Wang YE, Correll M, Jiang H, Cotton SL, Kokaras AS, Bousvaros A. Alterations in diversity of the oral microbiome in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:935–42.

    Article  PubMed  Google Scholar 

  38. •• Khan KJ, Ullman TA, Ford AC, Abreu MT, Abadir A, Marshall JK, Talley NJ, and Moayyedi P. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am. J. Gastroenterol. 2011;106: 661–673. Meta-analysis of antibiotic therapy use in inflammatory bowel disease.

    Article  PubMed  CAS  Google Scholar 

  39. Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, Balish E, Hammer RE. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180:2359–64.

    Article  PubMed  CAS  Google Scholar 

  40. Rosenbaum JT, Davey MP. Time for a gut check: evidence for the hypothesis that HLA-B27 predisposes to ankylosing spondylitis by altering the microbiome. Arthritis Rheum. 2011;63:3195–8.

    Article  PubMed  Google Scholar 

  41. • Sanz Y., De P.G., and Laparra M. Unraveling the ties between celiac disease and intestinal microbiota. Int. Rev. Immunol. 2011;30: 207–218. Current review on the available studies looking at the differences in microbiota in patients with celiac disease compared with healthy individuals.

    Article  PubMed  Google Scholar 

  42. •• Sellitto M, Bai G, Serena G, Fricke WF, Sturgeon C, Gajer P, White JR, Koenig SS, Sakamoto J, Boothe D, et al. Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS. One. 2012;7: e33387. Discusses the composition of microbiota in celiac susceptible infants, examines the impact of delaying introduction of gluten in these infants, and discusses the metabolome as a biomarker for disease in predisposed children.

    Article  PubMed  CAS  Google Scholar 

  43. • Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans. Gut Microbes. 2010;1: 135–137. Extension of prior study showing that the GFD itself can affect the composition of the microbiome.

    Article  PubMed  Google Scholar 

  44. De PG, Nadal I, Collado MC, Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr. 2009;102:1154–60.

    Article  Google Scholar 

  45. Barker JM. Clinical review: Type 1 diabetes-associated autoimmunity: natural history, genetic associations, and screening. J Clin Endocrinol Metab. 2006;91:1210–7.

    Article  PubMed  CAS  Google Scholar 

  46. •• Boerner BP, and Sarvetnick NE. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann. N. Y. Acad. Sci. 2011;1243: 103–118. Nice review of the microbiome and its effect on both the adaptive and innate immune system and environmental factors that alter it in humans and mice.

    Article  PubMed  CAS  Google Scholar 

  47. Redondo MJ, Fain PR, Eisenbarth GS. Genetics of type 1A diabetes. Recent Prog Horm Res. 2001;56:69–89.

    Article  PubMed  CAS  Google Scholar 

  48. Martins TC, Aguas AP. Changes in B and T lymphocytes associated with mycobacteria-induced protection of NOD mice from diabetes. J Autoimmun. 1996;9:501–7.

    Article  PubMed  CAS  Google Scholar 

  49. Oldstone MB. Prevention of type I diabetes in nonobese diabetic mice by virus infection. Science. 1988;239:500–2.

    Article  PubMed  CAS  Google Scholar 

  50. Qin HY, Singh B. BCG vaccination prevents insulin-dependent diabetes mellitus (IDDM) in NOD mice after disease acceleration with cyclophosphamide. J Autoimmun. 1997;10:271–8.

    Article  PubMed  CAS  Google Scholar 

  51. Ramiya VK, Shang XZ, Pharis PG, Wasserfall CH, Stabler TV, Muir AB, Schatz DA, Maclaren NK. Antigen based therapies to prevent diabetes in NOD mice. J Autoimmun. 1996;9:349–56.

    Article  PubMed  CAS  Google Scholar 

  52. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455:1109–13.

    Article  PubMed  CAS  Google Scholar 

  53. Harris K, Kassis A, Major G, Chou CJ. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes. 2012;2012:879151.

    PubMed  Google Scholar 

  54. King C, Sarvetnick N. The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions. PLoS One. 2011;6:e17049.

    Article  PubMed  CAS  Google Scholar 

  55. Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2011;108:11548–53.

    Article  PubMed  CAS  Google Scholar 

  56. Valladares R, Sankar D, Li N, Williams E, Lai KK, Abdelgeliel AS, Gonzalez CF, Wasserfall CH, Larkin J, Schatz D, et al. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats. PLoS One. 2010;5:10507.

    Article  Google Scholar 

  57. Brugman S, Klatter FA, Visser JT, Wildeboer-Veloo AC, Harmsen HJ, Rozing J, Bos NA. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia. 2006;49:2105–8.

    Article  PubMed  CAS  Google Scholar 

  58. Funda DP, Kaas A, Tlaskalova-Hogenova H, Buschard K. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. Diabetes Metab Res Rev. 2008;24:59–63.

    Article  PubMed  CAS  Google Scholar 

  59. Maurano F, Mazzarella G, Luongo D, Stefanile R, D’Arienzo R, Rossi M, Auricchio S, Troncone R. Small intestinal enteropathy in non-obese diabetic mice fed a diet containing wheat. Diabetologia. 2005;48:931–7.

    Article  PubMed  CAS  Google Scholar 

  60. Turley SJ, Lee JW, Dutton-Swain N, Mathis D, Benoist C. Endocrine self and gut non-self intersect in the pancreatic lymph nodes. Proc Natl Acad Sci U S A. 2005;102:17729–33.

    Article  PubMed  CAS  Google Scholar 

  61. Ejsing-Duun M, Josephsen J, Aasted B, Buschard K, Hansen AK. Dietary gluten reduces the number of intestinal regulatory T cells in mice. Scand J Immunol. 2008;67:553–9.

    Article  PubMed  CAS  Google Scholar 

  62. • Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, Drew JC, Ilonen J, Knip M, Hyoty H, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME. J. 2011;5: 82–91. Study that finds an altered microbiome in those chldren with Type 1 diabetes and suggest that bacterial markers may be a prudent screen for type 1 diabetes disease susceptibility.

    Article  PubMed  CAS  Google Scholar 

  63. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, Casella G, Drew JC, Ilonen J, Knip M, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6:e25792.

    Article  PubMed  CAS  Google Scholar 

  64. Ljungberg M, Korpela R, Ilonen J, Ludvigsson J, Vaarala O. Probiotics for the prevention of beta cell autoimmunity in children at genetic risk of type 1 diabetes–the PRODIA study. Ann N Y Acad Sci. 2006;1079:360–4.

    Article  PubMed  Google Scholar 

  65. • Grice EA, and Segre JA. The skin microbiome. Nat. Rev. Microbiol. 2011;9: 244–253. Excellent review of the environment of the skin and its associated microflora.

    Article  PubMed  CAS  Google Scholar 

  66. Fahlen A, Engstrand L, Baker BS, Powles A, Fry L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res. 2012;304:15–22.

    Article  PubMed  CAS  Google Scholar 

  67. Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3:e2719.

    Article  PubMed  Google Scholar 

  68. Paulino LC, Tseng CH, Strober BE, Blaser MJ. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol. 2006;44:2933–41.

    Article  PubMed  CAS  Google Scholar 

  69. Paulino LC, Tseng CH, Blaser MJ. Analysis of Malassezia microbiota in healthy superficial human skin and in psoriatic lesions by multiplex real-time PCR. FEMS Yeast Res. 2008;8:460–71.

    Article  PubMed  CAS  Google Scholar 

  70. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338:278–85.

    Article  PubMed  CAS  Google Scholar 

  71. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, Wekerle H, Krishnamoorthy G. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479:538–41.

    Article  PubMed  CAS  Google Scholar 

  72. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4615–22.

    Article  PubMed  CAS  Google Scholar 

  73. Lavasani S, Dzhambazov B, Nouri M, Fak F, Buske S, Molin G, Thorlacius H, Alenfall J, Jeppsson B, Westrom B. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One. 2010;5:e9009.

    Article  PubMed  Google Scholar 

  74. Ochoa-Reparaz J, Mielcarz DW, Haque-Begum S, Kasper LH. Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes. 2010;1:103–8.

    Article  PubMed  Google Scholar 

  75. Matsushita T, Horikawa M, Iwata Y, Tedder TF. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J Immunol. 2010;185:2240–52.

    Article  PubMed  CAS  Google Scholar 

  76. Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, Burroughs AR, Begum-Haque S, Dasgupta S, Kasper DL, Kasper LH. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol. 2010;185:4101–8.

    Article  PubMed  CAS  Google Scholar 

  77. Shaw PJ, Lukens JR, Burns S, Chi H, McGargill MA, Kanneganti TD. Cutting edge: critical role for PYCARD/ASC in the development of experimental autoimmune encephalomyelitis. J Immunol. 2010;184:4610–4.

    Article  PubMed  CAS  Google Scholar 

  78. Gris D, Ye Z, Iocca HA, Wen H, Craven RR, Gris P, Huang M, Schneider M, Miller SD, Ting JP. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J Immunol. 2010;185:974–81.

    Article  PubMed  CAS  Google Scholar 

  79. • Power C, Antony JM, Ellestad KK, Deslauriers A, Bhat R, and Noorbakhsh F. The human microbiome in multiple sclerosis: pathogenic or protective constituents? Can. J. Neurol. Sci. 2010;37(2): S24-S33. Discusses the role of the viral microbiome in multiple sclerosis.

    PubMed  Google Scholar 

  80. • Brahic M. Multiple sclerosis and viruses. Ann. Neurol. 2010;68: 6–8. Discusses difficulty of determining associative versus causal relationship between viruses and multiple sclerosis.

    Article  PubMed  Google Scholar 

  81. Firestein G (2007). Rheumatoid Arthritis.

  82. Zarco MF, Vess TJ, Ginsburg GS. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis. 2012;18:109–20.

    Article  PubMed  CAS  Google Scholar 

  83. Jenkinson HF. Beyond the oral microbiome. Environ Microbiol. 2011;13:3077–87.

    Article  PubMed  Google Scholar 

  84. Hitchon CA, El-Gabalawy HS. Infection and rheumatoid arthritis: still an open question. Curr Opin Rheumatol. 2011;23:352–7.

    Article  PubMed  Google Scholar 

  85. Hitchon CA, Chandad F, Ferucci ED, Willemze A, Ioan-Facsinay A, van der Woude D, Markland J, Robinson D, Elias B, Newkirk M, et al. Antibodies to porphyromonas gingivalis are associated with anticitrullinated protein antibodies in patients with rheumatoid arthritis and their relatives. J Rheumatol. 2010;37:1105–12.

    Article  PubMed  CAS  Google Scholar 

  86. Mikuls TR, Payne JB, Reinhardt RA, Thiele GM, Maziarz E, Cannella AC, Holers VM, Kuhn KA, O’Dell JR. Antibody responses to Porphyromonas gingivalis (P. gingivalis) in subjects with rheumatoid arthritis and periodontitis. Int Immunopharmacol. 2009;9:38–42.

    Article  PubMed  CAS  Google Scholar 

  87. Lee YK, Mazmanian SK. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science. 2010;330:1768–73.

    Article  PubMed  CAS  Google Scholar 

  88. • Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, Littman DR, Benoist C, and Mathis D. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32: 815–827. Demonstrated that bacteria, SFB, can drive inflammatory arthritis by influencing Th17 development in a mouse model.

    Article  PubMed  CAS  Google Scholar 

  89. Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR, Heuvelmans-Jacobs M, Akira S, Nicklin MJ, Ribeiro-Dias F, et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest. 2008;118:205–16.

    Article  PubMed  CAS  Google Scholar 

  90. Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol. 2011;7:569–78.

    PubMed  CAS  Google Scholar 

  91. Rodriguez-Reyna TS, Martinez-Reyes C, Yamamoto-Furusho JK. Rheumatic manifestations of inflammatory bowel disease. World J Gastroenterol. 2009;15:5517–24.

    Article  PubMed  CAS  Google Scholar 

  92. • Gomez A, Luckey D, Yeoman CJ, Marietta EV, Bergmiller ME, Murray JA, White BA, and Taneja V. Loss of sex and age driven differences in the gut microbiome characterize arthritis-susceptible 0401 mice but not arthritis-resistant 0402 mice. PLoS One 2012;7: e36095. Demonstrated that the human RA susceptibility allele influences composition of the microbiota and is pronounced in females versus males and also influenced by age.

    Article  PubMed  CAS  Google Scholar 

  93. Greenwald RA. The road forward: the scientific basis for tetracycline treatment of arthritic disorders. Pharmacol Res. 2011;64:610–3.

    Article  PubMed  CAS  Google Scholar 

  94. Stone M, Fortin PR, Pacheco-Tena C, Inman RD. Should tetracycline treatment be used more extensively for rheumatoid arthritis? Metaanalysis demonstrates clinical benefit with reduction in disease activity. J Rheumatol. 2003;30:2112–22.

    PubMed  CAS  Google Scholar 

  95. Ogrendik M, Karagoz N. Treatment of rheumatoid arthritis with roxithromycin: a randomized trial. Postgrad Med. 2011;123:220–7.

    Article  PubMed  Google Scholar 

  96. Urasaki Y, Nori M, Iwata S, Sasaki T, Hosono O, Kawasaki H, Tanaka H, Dang NH, Ikeda E, Morimoto C. Roxithromycin specifically inhibits development of collagen induced arthritis and production of proinflammatory cytokines by human T cells and macrophages. J Rheumatol. 2005;32:1765–74.

    PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mildred Kwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fung, I., Garrett, J.PD., Shahane, A. et al. Do Bugs Control Our Fate? The Influence of the Microbiome on Autoimmunity. Curr Allergy Asthma Rep 12, 511–519 (2012). https://doi.org/10.1007/s11882-012-0291-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-012-0291-2

Keywords

Navigation