Skip to main content

Advertisement

Log in

Associations between source-indicative pollution metrics and increases in pulmonary inflammation and reduced lung function in a panel of asthmatic children

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Exposure to traffic-related air pollution may pose an elevated risk of respiratory harm to asthmatic children. The goal of this study was to investigate the association between exposure to specific classes of air pollutants and respiratory response in a panel of asthmatic children in El Paso, Texas. Air pollution and health response was measured at two elementary schools in El Paso with different levels of air pollution exposure. A high-exposure school was adjacent to the U.S.–Mexico border in close proximity to a major border crossing for diesel truck traffic, while the low-exposure school was in a suburban area distant from major roadways. The indoor and outdoor concentration of particle- and gas-phase pollutants was measured at each school for 13 weeks. Speciation of pollutants was performed to help identify sources. Each week, a panel of 38 asthmatic students performed pulmonary function and exhaled nitric oxide tests and completed asthma symptom questionnaires. Changes in both lung function and airway inflammation were significantly associated with pollutants with known traffic-related sources. FEV1 declined by up to 5 % in association with an interquartile range increase in the concentration of volatile organic compounds with traffic sources. Exhaled nitric oxide increased 1–5 % in association with these same compounds as well as with particulate black carbon (which also has a traffic-related source). No associations were observed between health response and pollutants with non-roadway sources. Exposure to traffic-related air pollution may lead to increased airway inflammation and decreased lung function in asthmatic children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aalto P, Hämeri K, Paatero P, Kulmala M, Bellander T, Berglind N, Bouso L, Castaño-Vinyals G, Sunyer J, Cattani G, Marconi A, Cyrys J, Von Klot S, Peters A, Zetzsche K, Lanki T, Pekkanen J, Nyberg F, Sjövall B, Forastiere F (2005) Aerosol particle number concentration measurements in five European cities using TSI-3022 condensation particle counter over a three-year period during Health Effects of Air Pollution on Susceptible Subpopulations. J Air Waste Manage Assoc 55(8):1064–1076

    Article  CAS  Google Scholar 

  • Adamkiewicz G, Ebelt S, Syring M, Slater J, Speizer FE, Schwartz J, Suh H, Gold DR (2004) Association between air pollution exposure and exhaled nitric oxide in an elderly population. Thorax 59(3):204–209. doi:10.1136/thorax.2003.006445

    Article  CAS  Google Scholar 

  • Allen RW, Mar T, Koenig J, Liu L-JS, Gould T, Simpson C, Larson T (2008) Changes in lung function and airway inflammation among asthmatic children residing in a woodsmoke-impacted urban area. Inhal Toxicol 20(4):423–433. doi:10.1080/08958370801903826

    Article  CAS  Google Scholar 

  • Alving K, Malinovschi A (2010) Basic aspects of exhaled nitric oxide. European Respiratory Monograph 49:1–31. doi:10.1183/1025448x.00028509

    Article  Google Scholar 

  • Barraza-Villarreal A, Sunyer J, Hernandez-Cadena L, Escamilla-Nuñez MC, Sienra-Monge JJ, Ramírez-Aguilar M, Cortez-Lugo M, Holguín F, Diaz-Sánchez D, Olin AC, Romieu I (2008) Air pollution, airway inflammation, and lung function in a cohort study of Mexico City schoolchildren. Environ Health Perspect 116(6):832–838. doi:10.1289/ehp.10926

    Article  Google Scholar 

  • Berend N, Salome CM, King GG (2008) Mechanisms of airway hyperresponsiveness in asthma. Respirology 13(5):624–631. doi:10.1111/j.1440-1843.2008.01330.x

    Article  Google Scholar 

  • Buczynska AJ, Krata A, Stranger M, Locateli Godoi AF, Kontozova-Deutsch V, Bencs L, Naveau I, Roekens E, Van Grieken R (2009) Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmos Environ 43(2):311–318. doi:10.1016/j.atmosenv.2008.09.071

    Article  CAS  Google Scholar 

  • Caselli M, de Gennaro G, Marzocca A, Trizio L, Tutino M (2010) Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere 81(3):306–311. doi:10.1016/j.chemosphere.2010.07.033

    Article  CAS  Google Scholar 

  • Delfino RJ, Gong H, Linn WS, Pellizzari ED, Hu Y (2003) Asthma symptoms in Hispanic children and daily ambient exposures to toxic and criteria air pollutants. Environ Health Perspect 111(4):647–656

    Article  CAS  Google Scholar 

  • Delfino RJ, Staimer N, Gillen D, Tjoa T, Sioutas C, Fung K, George SC, Kleinman MT (2006) Personal and ambient air pollution is associated with increased exhaled nitric oxide in children with asthma. Environ Health Perspect 114(11):1736–1743. doi:10.1289/ehp.9141

    CAS  Google Scholar 

  • EPA US (2003) U.S. Environmental Protection Agency. U.S. Environmental Protection Agency, Research Triangle Park

    Google Scholar 

  • Fan Z, Lioy P, Weschler C, Fiedler N, Kipen H, Zhang J (2003) Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions. Environ Sci Technol 37(9):1811–1821. doi:10.1021/es026231i

    Article  CAS  Google Scholar 

  • Fischer PH, Steerenberg PA, Snelder J, van Loveren H, van Amsterdam JGC (2002) Association between exhaled nitric oxide, ambient air pollution and respiratory health in school children. Int Arch Occup Environ Health 75(5):348–353. doi:10.1007/s00420-002-0320-x

    Article  CAS  Google Scholar 

  • Fujita EM, Campell DE, Zielinska B, Arnott WP, Chow JC (2011) Concentrations of air toxics in motor vehicle-dominated environments. Health Effects Institute, Boston

    Google Scholar 

  • Hankinson JL, Odencrantz JR, Fedan KB (1999) Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 159(1):179–187

    Article  CAS  Google Scholar 

  • Hemmingsson T, Linnarsson D, Gambert R (2004) Novel hand-held device for exhaled nitric oxide-analysis in research and clinical applications. J Clin Monit Comput 18(5–6):379–387

    Article  Google Scholar 

  • Holguín F, Flores S, Ross Z, Cortez M, Molina M, Molina L, Rincon C, Jerrett M, Berhane K, Granados A, Romieu I (2007) Traffic-related exposures, airway function, inflammation, and respiratory symptoms in children. Am J Respir Crit Care Med 176(12):1236–1242. doi:10.1164/rccm.200611-1616OC

    Article  Google Scholar 

  • Iovino P, Polverino R, Salvestrini S, Capasso S (2009) Temporal and spatial distribution of BTEX pollutants in the atmosphere of metropolitan areas and neighbouring towns. Environ Monit Assess 150(1):437–444. doi:10.1007/s10661-008-0242-5

    Article  CAS  Google Scholar 

  • Jansen KL, Larson TV, Koenig JQ, Mar TF, Fieids C, Stewart J, Lippmann M (2005) Associations between health effects and particulate matter and black carbon in subjects with respiratory disease. Environ Health Perspect 113(12):1741–1746. doi:10.1289/ehp.8153

    Article  CAS  Google Scholar 

  • Koenig JQ, Jansen K, Mar TF, Lumley T, Kaufman J, Trenga CA, Sullivan J, Liu LJS, Shapiro GG, Larson TV (2003) Measurement of offline exhaled nitric oxide in a study of community exposure to air pollution. Environ Health Perspect 111(13):1625–1629. doi:10.1289/ehp.6160

    Article  CAS  Google Scholar 

  • Koenig JQ, Mar TF, Allen RW, Jansen K, Lumley T, Sullivan JH, Trenga CA, Larson TV, Liu LJS (2005) Pulmonary effects of indoor- and outdoor-generated particles in children with asthma. Environ Health Perspect 113(4):499–503. doi:10.1289/ehp.7511

    Article  CAS  Google Scholar 

  • Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL (2002) 2000 CDC growth charts for the United States: methods and development. Vital and Health Statistics, vol 11. National Center for Health Statistics, Washington

    Google Scholar 

  • Li W-W, Cárdenas N, Walton J, Trujillo D, Morales H, Arimoto R (2005) PM source identification at Sunland Park, New Mexico, using a simple heuristic meteorological and chemical analysis. J Air Waste Manage Assoc 55(3):352–364

    Article  CAS  Google Scholar 

  • Liu L, Poon R, Chen L, Frescura A-M, Montuschi P, Ciabattoni G, Wheeler A, Dales R (2009) Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environ Health Perspect 117(4):668–674. doi:10.1289/ehp.11813

    Article  CAS  Google Scholar 

  • Mar TF, Jansen K, Shepherd K, Lumley T, Larson TV, Koenig JQ (2005) Exhaled nitric oxide in children with asthma and short-term PM2.5 exposure in Seattle. Environ Health Perspect 113(12):1791–1794. doi:10.1289/ehp.7883

    Article  CAS  Google Scholar 

  • Neidell MJ (2004) Air pollution, health, and socio-economic status: the effect of outdoor air quality on childhood asthma. J Health Econ 23(6):1209–1236. doi:10.1016/j.jhealeco.2004.05.002

    Article  Google Scholar 

  • Oftedal B, Brunekreef B, Nystad W, Madsen C, Walker S-E, Nafstad P (2008) Residential outdoor air pollution and lung function in schoolchildren. Epidemiology 19(1):129–137. doi:10.1097/EDE.0b013e31815c0827

    Article  Google Scholar 

  • Park E-J, Roh J, Kang M-S, Kim SN, Kim Y, Choi S (2011) Biological responses to diesel exhaust particles (DEPs) depend on the physicochemical properties of the DEPs. PLoS One 6(10):e26749. doi:10.1371/journal.pone.0026749

    Article  CAS  Google Scholar 

  • Pollution HPotHEoT-RA (2010) Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects. Health Effects Institute, Boston

    Google Scholar 

  • Rabinovitch N, Strand M, Gelfand EW (2006) Particulate levels are associated with early asthma worsening in children with persistent disease. Am J Respir Crit Care Med 173(10):1098–1105. doi:10.1164/rccm.200509-1393OC

    Article  CAS  Google Scholar 

  • Romieu I, Aguilar MR, Macias HM, Villareal AB, Cadena LH, Arroyo LC (2003) Health impacts of air pollution on morbidity and mortality among children of Ciudad Juárez, Chihuahua. Mexico. Commission for Environmental Cooperation, Montreal

    Google Scholar 

  • Sarnat SE, Raysoni AU, Li W-W, Holguín F, Johnson B, Flores-Luevano S, García JH, Sarnat JA (2011) Air pollution and acute respiratory response in a panel of asthmatic children along the US-Mexico border. Environ Health Perspect AOP. doi:10.1289/ehp. 1003169

  • Sekine K, Shima M, Nitta Y, Adachi M (2004) Long term effects of exposure to automobile exhaust on the pulmonary function of female adults in Tokyo, Japan. Occup Environ Med 61(4):350–357

    Article  CAS  Google Scholar 

  • Shore SA (2010) Obesity, airway hyperresponsiveness, and inflammation. J Appl Physiol 108(3):735–743. doi:10.1152/japplphysiol.00749.2009

    Article  Google Scholar 

  • Singer BC, Revzan KL, Hotchi T, Hodgson AT, Brown NJ (2004) Sorption of organic gases in a furnished room. Atmos Environ 38(16):2483–2494. doi:10.1016/j.atmosenv.2004.02.003

    Article  CAS  Google Scholar 

  • Spahn JD, Covar R (2008) Clinical assessment of asthma progression in children and adults. J Allergy Clin Immunol 121(3):548–557. doi:10.1016/j.jaci.2008.01.012

    Article  Google Scholar 

  • Steerenberg PA, Nierkens S, Fischer PH, Van Loveren H, Opperhuizen A, Vos JG, Van Amsterdam JGC (2001) Traffic-related air pollution affects peak expiratory flow, exhaled nitric oxide, and inflammatory nasal markers. Arch Environ Health 56(2):167–174

    Article  CAS  Google Scholar 

  • Steerenberg PA, Janssen NAH, de Meer G, Fischer PH, Nierkens S, van Loveren H, Opperhuizen A, Brunekreef B, van Amsterdam JGC (2003) Relationship between exhaled NO, respiratory symptoms, lung function, bronchial hyperresponsiveness, and blood eosinophilia in school children. Thorax 58(3):242–245. doi:10.1136/thorax.58.3.242

    Article  CAS  Google Scholar 

  • Wadsworth SJ, Sin DD, Dorscheid DR (2011) Clinical update on the use of biomarkers of airway inflammation in the management of asthma. Journal of Asthma and Allergy 4:77–86. doi:10.2147/JAA.S15081

    Article  Google Scholar 

  • Zora JE, Sarnat SE, Raysoni AU, Johnson BA, Li W-W, Greenwald R, Holguín F, Stock TH, Sarnat JA (2012) Associations between urban air pollution and pediatric asthma control in El Paso, Texas. Sci Total Environ in review

Download references

Acknowledgments

Funding provided by the Mickey Leland National Urban Air Toxic Research Center

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roby Greenwald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenwald, R., Sarnat, S.E., Raysoni, A.U. et al. Associations between source-indicative pollution metrics and increases in pulmonary inflammation and reduced lung function in a panel of asthmatic children. Air Qual Atmos Health 6, 487–499 (2013). https://doi.org/10.1007/s11869-012-0186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-012-0186-3

Keywords

Navigation