Skip to main content

Advertisement

Log in

Myelodysplasia: New Approaches

  • Leukemia (JP Dutcher, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

The myelodysplastic syndromes (MDS) are a group of clonal hematopoietic disorders characterized by bone marrow failure and a risk of progression to acute myelogenous leukemia (AML). A precise diagnosis is critical, because there is overlap between the clinical and laboratory findings of MDS and other malignant and nonmalignant hematologic disorders. Several prognostic scoring systems (IPSS, WPSS, LR-PSS, and IPSS-R) assess a patient’s risk of progression to AML and overall survival. Many patients are elderly, so age and comorbidities are an important consideration. Patients with lower-risk disease are treated with growth factors (erythropoietin stimulating agents and/or G-CSF) and immunomodulatory agents (antithymocyte globulin and/or lenalidomide). Patients with higher-risk disease have a higher risk of progression to AML and are treated with hypomethylating agents (azacitidine or decitabine) and allogeneic stem cell transplantation if appropriate. Recent laboratory studies have increased our understanding of the pathophysiology of this disease. Mutations in genes effecting ribosomes, splicing of RNA and epigenetics have been discovered. It is likely that these breakthroughs will lead to newer classes of targeted therapies against this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Luzzatto AM. Sull anemia grave megaloblastica sensa reporto ematologica correspondents (anemia pseudo-aplastica). Riv Ven. 1907;47:193.

    Google Scholar 

  2. Rhoads CP, Barker WH. Refractory anemia: analysis of 100 cases. JAMA. 1938;110:794.

    Article  Google Scholar 

  3. Block M, Jacobson LO, Bethard WF. Preleukemic acute human leukemia. JAMA. 1953;152:1018–28.

    Article  CAS  Google Scholar 

  4. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51:189–99.

    PubMed  CAS  Google Scholar 

  5. Schnatter AR, Glass DC, Tang G, et al. Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. J Natl Cancer Inst. 2012;104:1724–37.

    Article  PubMed  CAS  Google Scholar 

  6. Irons RD, Gross SA, Le A, et al. Integrating WHO 2001-2008 criteria for the diagnosis of Myelodysplastic Syndrome (MDS): a case-case analysis of benzene exposure. Chem Biol Interact. 2010;184:30–8.

    Article  PubMed  CAS  Google Scholar 

  7. Nisse C, Haguenoer JM, Grandbastien B, et al. Occupational and environmental risk factors of the myelodysplastic syndromes in the North of France. Br J Haematol. 2001;112:927–35.

    Article  PubMed  CAS  Google Scholar 

  8. Lv L, Lin G, Gao X, et al. Case-control study of risk factors of myelodysplastic syndromes according to World Health Organization classification in a Chinese population. Am J Hematol. 2011;86:163–9.

    Article  PubMed  Google Scholar 

  9. Nagata C, Shimizu H, Hirashima K, et al. Hair dye use and occupational exposure to organic solvents as risk factors for myelodysplastic syndrome. Leuk Res. 1999;23:57–62.

    Article  PubMed  CAS  Google Scholar 

  10. Blair A, Zheng T, Linos A, et al. Occupation and leukemia: a population-based case-control study in Iowa and Minnesota. Am J Ind Med. 2001;40:3–14.

    Article  PubMed  CAS  Google Scholar 

  11. Bjork J, Albin M, Mauritzson N, et al. Smoking and myelodysplastic syndromes. Epidemiology. 2000;11:285–91.

    Article  PubMed  CAS  Google Scholar 

  12. Ma X, Wang R, Galili N, et al. Cigarette smoking shortens the survival of patients with low-risk myelodysplastic syndromes. Cancer Causes Control. 2011;22:623–9.

    Article  PubMed  Google Scholar 

  13. Nardi V, Winkfield KM, Ok CY, et al. Acute myeloid leukemia and myelodysplastic syndromes after radiation therapy are similar to de novo disease and differ from other therapy-related myeloid neoplasms. J Clin Oncol. 2012;30:2340–7.

    Article  PubMed  Google Scholar 

  14. Pedersen-Bjergaard J, Andersen MK, et al. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2008;22(2):240–8. doi:10.1038/sj.leu.2405078. Epub 2008 Jan 17.

    Article  PubMed  CAS  Google Scholar 

  15. Schanz J, Tüchler H, Solé F, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30:820–9. The most recent cytogenetic classification of MDS

    Google Scholar 

  16. Tiu RV, Gondek LP, O'Keefe CL, et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood. 2011;117:4552–60.

    Article  PubMed  CAS  Google Scholar 

  17. Thiel A, Beier M, Ingenhag D, et al. Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance. Leukemia. 2011;25:387–99.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9. The first report that mutations in the spliceosome result in human disease.

    Article  PubMed  CAS  Google Scholar 

  19. Makishima H, Visconte V, Sakaguchi H, et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. 2012;119:3203–10.

    Article  PubMed  CAS  Google Scholar 

  20. Damm F, Kosmider O, Gelsi-Boyer V, et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood. 2012;119:3211–8.

    Article  PubMed  CAS  Google Scholar 

  21. Papaemmanuil E, Cazzola M, Boultwood J, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365:1384–95.

    Article  PubMed  CAS  Google Scholar 

  22. Ebert BL, Pretz J, Bosco J, et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature. 2008;451:335–9.

    Article  PubMed  CAS  Google Scholar 

  23. Draptchinskaia N, Gustavsson P, Andersson B, et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet. 1999;21:169–75.

    Article  PubMed  CAS  Google Scholar 

  24. Dutt S, Narla A, Lin K, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood. 2011;117:2567–76.

    Article  PubMed  CAS  Google Scholar 

  25. Wang J, Ai X, Gale RP, et al. TET2, ASXL1 and EZH2 mutations in Chinese with myelodysplastic syndromes. Leuk Res. 2012, Epub ahead of print.

  26. Dambruoso I, Boni M, Rossi M, et al. Detection of TET2 abnormalities by fluorescence in situ hybridization in 41 patients with myelodysplastic syndrome. Cancer Genet. 2012;205:285–94.

    Article  PubMed  CAS  Google Scholar 

  27. Smith AE, Mohamedali AM, Kulasekararaj A, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010;116:3923–32.

    Article  PubMed  CAS  Google Scholar 

  28. Rocquain J, Carbuccia N, Trouplin V, et al. Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer. 2010;10:401.

    Article  PubMed  Google Scholar 

  29. Bacher U, Haferlach C, Schnittger S, et al. Mutations of the TET2 and CBL genes: novel molecular markers in myeloid malignancies. Ann Hematol. 2010;89:643–52.

    Article  PubMed  CAS  Google Scholar 

  30. Kosmider O, Gelsi-Boyer V, Cheok M, et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood. 2009;114:3285–91.

    Article  PubMed  CAS  Google Scholar 

  31. Langemeijer SM, Kuiper RP, Berends M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41:838–42.

    Article  PubMed  CAS  Google Scholar 

  32. Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301.

    Article  PubMed  Google Scholar 

  33. Jankowska AM, Szpurka H, Tiu RV, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood. 2009;113:6403–10.

    Article  PubMed  CAS  Google Scholar 

  34. Lin J, Yao DM, Qian J, et al. Recurrent DNMT3A R882 mutations in Chinese patients with acute myeloid leukemia and myelodysplastic syndrome. PLoS One. 2011;6:e26906.

    Article  PubMed  CAS  Google Scholar 

  35. Walter MJ, Ding L, Shen D, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25:1153–8.

    Article  PubMed  CAS  Google Scholar 

  36. Ewalt M, Galili NG, Mumtaz M, et al. DNMT3a mutations in high-risk myelodysplastic syndrome parallel those found in acute myeloid leukemia. Blood Cancer J. 2011;1:e9.

    Article  PubMed  CAS  Google Scholar 

  37. Sekeres MA, Schoonen WM, Kantarjian H, et al. Characteristics of US patients with myelodysplastic syndromes: results of six cross-sectional physician surveys. J Natl Cancer Inst. 2008;100:1542–51.

    Article  PubMed  Google Scholar 

  38. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51. The most recent pathologic classification of MDS.

    Article  PubMed  CAS  Google Scholar 

  39. van de Loosdrecht AA, Ireland R, Kern W, et al. Rationale for the clinical application of flow cytometry in patients with myelodysplastic syndromes: position paper of an International Consortium and the European LeukemiaNet Working Group. Leuk Lymphoma. 2012, Epub ahead of print.

  40. Westers TM, Ireland R, Kern W, et al. Standardization of flow cytometry in myelodysplastic syndromes: a report from an international consortium and the European LeukemiaNet Working Group. Leukemia. 2012;26:1730–41.

    Article  PubMed  CAS  Google Scholar 

  41. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.

    PubMed  CAS  Google Scholar 

  42. Malcovati L, Germing U, Kuendgen A, et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol. 2007;25:3503–10.

    Article  PubMed  Google Scholar 

  43. Kantarjian H, O'Brien S, Ravandi F, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113:1351–61.

    Article  PubMed  CAS  Google Scholar 

  44. Garcia-Manero G, Shan J, Faderl S, et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia. 2008;22:538–43.

    Article  PubMed  CAS  Google Scholar 

  45. Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65. The most current prognostic scoring system for MDS.

    Article  PubMed  CAS  Google Scholar 

  46. Wu SJ, Kuo YY, Hou HA, et al. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood. 2012;120:3106–11.

    Article  PubMed  CAS  Google Scholar 

  47. Bejar R, Stevenson KE, Caughey BA, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30:3376–82.

    Article  PubMed  Google Scholar 

  48. Qian J, Yao DM, Lin J, et al. U2AF1 mutations in Chinese patients with acute myeloid leukemia and myelodysplastic syndrome. PLoS One. 2012;7:e45760.

    Article  PubMed  CAS  Google Scholar 

  49. Graubert TA, Shen D, Ding L, et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet. 2011;44:53–7.

    Article  PubMed  Google Scholar 

  50. Naqvi K, Garcia-Manero G, Sardesai S, et al. Association of comorbidities with overall survival in myelodysplastic syndrome: development of a prognostic model. J Clin Oncol. 2011;29:2240–6.

    Article  PubMed  Google Scholar 

  51. Hellström-Lindberg E, Negrin R, Stein R, et al. Erythroid response to treatment with G-CSF plus erythropoietin for the anaemia of patients with myelodysplastic syndromes: proposal for a predictive model. Br J Haematol. 1997;99:344–51.

    Article  PubMed  Google Scholar 

  52. Greenberg PL, Sun Z, Miller KB, et al. Treatment of myelodysplastic syndrome patients with erythropoietin with or without granulocyte colony-stimulating factor: results of a prospective randomized phase 3 trial by the Eastern Cooperative Oncology Group (E1996). Blood. 2009;114:2393–400.

    Article  PubMed  CAS  Google Scholar 

  53. Molldrem JJ, Caples M, Mavroudis D, et al. Antithymocyte globulin for patients with myelodysplastic syndrome. Br J Haematol. 1997;99:699–705.

    Article  PubMed  CAS  Google Scholar 

  54. Sloand EM, Wu CO, Greenberg P, et al. Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy. J Clin Oncol. 2008;26:2505–11.

    Article  PubMed  Google Scholar 

  55. Saunthararajah Y, Nakamura R, Nam JM, et al. HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood. 2002;100:1570–4.

    PubMed  CAS  Google Scholar 

  56. Sloand EM, Olnes MJ, Shenoy A, et al. Alemtuzumab treatment of intermediate-1 myelodysplasia patients is associated with sustained improvement in blood counts and cytogenetic remissions. J Clin Oncol. 2010;28:5166–73.

    Article  PubMed  CAS  Google Scholar 

  57. List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355:1456–65.

    Article  PubMed  CAS  Google Scholar 

  58. Raza A, Reeves JA, Feldman EJ, et al. Phase II study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood. 2008;111:86–93.

    Article  PubMed  CAS  Google Scholar 

  59. Sekeres MA, Maciejewski JP, Giagounidis AA, et al. Relationship of treatment-related cytopenias and response to lenalidomide in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2008;26:5943–9.

    Article  PubMed  Google Scholar 

  60. Fenaux P, Giagounidis A, Selleslaq D, et al. A randomized phase III study of lenalidomide versus placebo in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with del5q. Blood. 2011;118:3765–76.

    Article  PubMed  CAS  Google Scholar 

  61. Adès L, Boehrer S, Prebet T, et al. Efficacy and safety of lenalidomide in intermediate-2 or high-risk myelodysplastic syndromes with 5q deletion: results of a phase 2 study. Blood. 2009;113:3947–52.

    Article  PubMed  Google Scholar 

  62. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20:2429–40.

    Article  PubMed  CAS  Google Scholar 

  63. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–32. The trial that demonstrated a survival advantage for MDS patients treated with azacitidine.

    Article  PubMed  CAS  Google Scholar 

  64. Seymour JF, Fenaux P, Silverman LR, et al. Effects of azacitidine compared with conventional care regimens in elderly (≥ 75 years) patients with higher-risk myelodysplastic syndromes. Crit Rev Oncol Hematol. 2010;76:218–27.

    Article  PubMed  Google Scholar 

  65. Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;106:1794–803.

    Article  PubMed  CAS  Google Scholar 

  66. Lübbert M, Suciu S, Baila L, et al. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J Clin Oncol. 2011;29:1987–96.

    Article  PubMed  Google Scholar 

  67. Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 2007;109:52–7.

    Article  PubMed  CAS  Google Scholar 

  68. Steensma DP, Baer MR, Slack JL, et al. Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial. J Clin Oncol. 2009;27:3842–8. The trial that represents the most common method of administration of decitabine in patients with MDS.

    Article  PubMed  CAS  Google Scholar 

  69. Cutler C. Patient selection for transplantation in the myelodysplastic syndromes. Hematol Oncol Clin N Am. 2010;24:469–76.

    Article  Google Scholar 

  70. Platzbecker U, Schetelig J, Finke J, et al. Allogeneic hematopoietic cell transplantation in patients age 60-70 years with de novo high-risk myelodysplastic syndrome or secondary acute myelogenous leukemia: comparison with patients lacking donors who received azacitidine. Biol Blood Marrow Transplant. 2012;18:1415–21.

    Article  PubMed  Google Scholar 

  71. Cutler CS, Lee SJ, Greenberg P, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104:579–85.

    Article  PubMed  CAS  Google Scholar 

  72. Gerds AT, Gooley TA, Estey EH, et al. Pretransplantation therapy with azacitidine vs induction chemotherapy and posttransplantation outcome in patients with MDS. Biol Blood Marrow Transplant. 2012;18:1211–8.

    Article  PubMed  CAS  Google Scholar 

  73. Damaj G, Duhamel A, Robin M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Societe Francaise de Greffe de Moelle et de Therapie-Cellulaire and the Groupe-Francophone des Myelodysplasies. J Clin Oncol. 2012, Epub ahead of print.

  74. Yahng SA, Yoon JH, Shin SH, et al. Response to pre-transplant hypomethylating agents influences the outcome of allogeneic hematopoietic stem cell transplantation in adults with myelodysplastic syndromes. Eur J Haematol. 2012, Nov 1 Epub ahead of print.

  75. Kröger N, Zabelina T, de Wreede L, et al. Allogeneic stem cell transplantation for older advanced MDS patients: improved survival with young unrelated donor in comparison with HLA-identical siblings. Leukemia. 2012, Jul 23 Epub ahead of print.

  76. Nakamura R, Palmer JM, O'Donnell MR, et al. Reduced intensity allogeneic hematopoietic stem cell transplantation for MDS using tacrolimus/sirolimus-based GVHD prophylaxis. Leuk Res. 2012;36:1152–6.

    Article  PubMed  CAS  Google Scholar 

  77. Cappellini MD, Bejaoui M, Agaoglu L, et al. Iron chelation with deferasirox in adult and pediatric patients with thalassemia major: efficacy and safety during 5 years' follow-up. Blood. 2011;118:884–93.

    Article  PubMed  CAS  Google Scholar 

  78. Vichinsky E, Onyekwere O, Porter J, et al. A randomised comparison of deferasirox versus deferoxamine for the treatment of transfusional iron overload in sickle cell disease. Br J Haematol. 2007;136:501–8.

    Article  PubMed  CAS  Google Scholar 

  79. Nolte F, Höchsmann B, Giagounidis A, et al. Results from a 1-year, open-label, single arm, multi-center trial evaluating the efficacy and safety of oral Deferasirox in patients diagnosed with low and int-1 risk myelodysplastic syndrome (MDS) and transfusion-dependent iron overload. Ann Hematol. 2012, Oct 17 Epub ahead of print.

  80. Porter J, Bowden DK, Economou M, et al. Health-related quality of life, treatment satisfaction, adherence and persistence in β-thalassemia and myelodysplastic syndrome patients with iron overload receiving deferasirox: results from the EPIC clinical trial. Anemia. 2012, Epub 2012 Aug 12.

  81. List AF, Baer MR, Steensma DP, et al. Deferasirox reduces serum ferritin and labile plasma iron in RBC transfusion-dependent patients with myelodysplastic syndrome. J Clin Oncol. 2012;30:2134–9.

    Article  PubMed  CAS  Google Scholar 

  82. Gattermann N, Finelli C, Porta MD, et al. Deferasirox in iron-overloaded patients with transfusion-dependent myelodysplastic syndromes: results from the large 1-year EPIC study. Leuk Res. 2010;34:1143–50.

    Article  PubMed  CAS  Google Scholar 

  83. Giagounidis A, Leto di Priolo S, et al. A European survey on the detection and management of iron overload in transfusion-dependent patients with MDS. Ann Hematol. 2011;90:667–73.

    Article  PubMed  Google Scholar 

  84. Greenberg PL, Koller CA, Cabantchik ZI, et al. Prospective assessment of effects on iron-overload parameters of deferasirox therapy in patients with myelodysplastic syndromes. Leuk Res. 2010;34:1560–5.

    Article  PubMed  CAS  Google Scholar 

  85. Breccia M, Finsinger P, Loglisci G, et al. Deferasirox treatment for myelodysplastic syndromes: "real-life" efficacy and safety in a single-institution patient population. Ann Hematol. 2012;91:1345–9.

    Article  PubMed  CAS  Google Scholar 

  86. Porter J, Galanello R, Saglio G, et al. Relative response of patients with myelodysplastic syndromes and other transfusion-dependent anaemias to deferasirox (ICL670): a 1-yr prospective study. Eur J Haematol. 2008;80:168–76.

    PubMed  CAS  Google Scholar 

  87. Alessandrino EP, Angelucci E, Cazzola M, et al. Iron overload and iron chelation therapy in patients with myelodysplastic syndrome treated by allogeneic stem-cell transplantation: report from the working conference on iron chelation of the Gruppo Italiano Trapianto di Midollo Osseo. Am J Hematol. 2011;86:897–902.

    Article  PubMed  Google Scholar 

  88. Gattermann N, Finelli C, Della Porta M, et al. Hematologic responses to deferasirox therapy in transfusion-dependent patients with myelodysplastic syndromes. Haematologica. 2012;97:1364–71.

    Article  PubMed  CAS  Google Scholar 

  89. Sekeres MA, Tiu RV, Komrokji R, et al. Phase 2 study of the lenalidomide and azacitidine combination in patients with higher-risk myelodysplastic syndromes. Blood. 2012 Aug 22 Epub ahead of print.

  90. Kantarjian H, Fenaux P, Sekeres MA, et al. Safety and efficacy of romiplostim in patients with lower-risk myelodysplastic syndrome and thrombocytopenia. J Clin Oncol. 2010;28:437–44.

    Article  PubMed  CAS  Google Scholar 

  91. Greenberg PL, Garcia-Manero G, Moore M, et al. A randomized controlled trial of romiplostim in patients with low- or intermediate-risk myelodysplastic syndrome (MDS) receiving decitabine. Leuk Lymphoma. 2012, Aug 20 Epub ahead of print.

  92. Kantarjian HM, Giles FJ, Greenberg PL, et al. Phase 2 study of romiplostim in patients with low- or intermediate-risk myelodysplastic syndrome receiving azacitidine therapy. Blood. 2010;116:3163–70.

    Article  PubMed  CAS  Google Scholar 

  93. Faderl S, Garcia-Manero G, Jabbour E, et al. A randomized study of 2 dose levels of intravenous clofarabine in the treatment of patients with higher-risk myelodysplastic syndrome. Cancer. 2012;118:722–8.

    Article  PubMed  CAS  Google Scholar 

  94. Garcia-Manero G, Gore SD, Cogle C, et al. Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J Clin Oncol. 2011;29:2521–7.

    Article  PubMed  CAS  Google Scholar 

  95. Raza A, Galili N, Smith SE, et al. A phase 2 randomized multicenter study of 2 extended dosing schedules of oral ezatiostat in low to intermediate-1 risk myelodysplastic syndrome. Cancer. 2012;118:2138–47.

    Article  PubMed  CAS  Google Scholar 

  96. Kantarjian H, Garcia-Manero G, O'Brien S, et al. Phase I clinical and pharmacokinetic study of oral sapacitabine in patients with acute leukemia and myelodysplastic syndrome. J Clin Oncol. 2010;28:285–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

K. Seiter: Consultancy for Cyclacel, received honoraria from, received payment for development of educational presentations from, and had travel/accommodations expenses covered or reimbursed by Celgene and Eisai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Seiter MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiter, K. Myelodysplasia: New Approaches. Curr. Treat. Options in Oncol. 14, 156–169 (2013). https://doi.org/10.1007/s11864-013-0224-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-013-0224-x

Keywords

Navigation