Skip to main content
Log in

A universality theorem for projectively unique polytopes and a conjecture of Shephard

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that every polytope described by algebraic coordinates is the face of a projectively unique polytope. This provides a universality property for projectively unique polytopes. Using a closely related result of Below, we construct a combinatorial type of 5-dimensional polytope that is not realizable as a subpolytope of any stacked polytope. This disproves a classical conjecture in polytope theory, first formulated by Shephard in the seventies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. A. Adiprasito and G. M. Ziegler, Many projectively unique polytopes, Inventiones mathematicae 199 (2015), 581–652.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Below, Complexity of triangulation, Ph.D. thesis, ETH Zürich, Zürich, CH, 2002.

    Google Scholar 

  3. E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Institut des Hautes Études Scientifiques. Publications Mathématiques 67 (1988), 5–42.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Dobbins, Representations of polytopes, Ph.D. thesis, Temple University, Philadelphia, PA, 2011.

    Google Scholar 

  5. B. Grünbaum, Convex Polytopes, 2nd ed., Graduate Texts in Mathematics, Vol. 221, Springer, New York, 2003.

    Book  MATH  Google Scholar 

  6. G. Kalai, Polytope skeletons and paths, in Handbook of Discrete and Computational Geometry, Chapman & Hall/CRC, Boca Raton, FL, 2004, pp. 455–476.

    Google Scholar 

  7. G. Kalai, Open problems for convex polytopes I’d love to see solved, Talk on Workshop ”Convex Polytopes” at RIMS Kyoto, July 2012, slides available at http://www.gilkalai.files.wordpress.com/2012/08/kyoto-3.pdf.

  8. M. Kapovich and J. J. Millson, Moduli spaces of linkages and arrangements, in Advances in Geometry, Progress in Mathematics, Vol. 172, Birkhäuser Boston, Boston, MA, 1999, pp. 237–270.

    Chapter  Google Scholar 

  9. M. K”omhoff, On a combinatorial problem concerning subpolytopes of stack polytopes, Geometriae Dedicata 9 (1980), 73–76.

    MathSciNet  Google Scholar 

  10. B. Lindström, On the realization of convex polytopes, Euler’s formula and Möbius functions, Aequationes Mathematicae 6 (1971), 235–240.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Richter-Gebert, Realization Spaces of Polytopes, Lecture Notes in Mathematics, Vol. 1643, Springer, Berlin, 1996.

    MATH  Google Scholar 

  12. J. Richter-Gebert, Perspectives on Projective Geometry, Springer, Heidelberg, 2011.

    Book  MATH  Google Scholar 

  13. R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, Vol. 44, Cambridge University Press, Cambridge, 1993.

    Book  MATH  Google Scholar 

  14. G. C. Shephard, Subpolytopes of stack polytopes, Israel Journal of Mathematics 19 (1974), 292–296.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. G. C. von Staudt, Beiträge zur Geometrie der Lage, no. 2, Baur und Raspe, Nürnberg, 1857.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim A. Adiprasito.

Additional information

Supported by DFG within the research training group “Methods for Discrete Structures” (GRK1408) and by the Romanian NASR, CNCS UEFISCDI, project PN-II-ID-PCE-2011-3-0533.

Supported by the DFG Collaborative Research Center SFB/TR 109 “Discretization in Geometry and Dynamics”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adiprasito, K.A., Padrol, A. A universality theorem for projectively unique polytopes and a conjecture of Shephard. Isr. J. Math. 211, 239–255 (2016). https://doi.org/10.1007/s11856-015-1272-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1272-7

Keywords

Navigation