Skip to main content
Log in

Open conformal cobordisms

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Conformal field theories were first axiomatized by Segal (2004) as symmetric monoidal functors from a topological category of conformal cobordisms between compact oriented 1-dimensional manifolds to vector spaces. Costello (2007) later expanded the definition of the category to allow for cobordisms between manifolds with boundaries, and was able to use representations of this category to give a mirror partner for Gromov-Witten invariants.

The main goal of this paper is to provide a rigorous definition of the category of open conformal cobordisms. To the best of our knowledge, such a definition does not appear in the literature. Although most results here are probably known to the experts, the proofs are, as far as we can tell, new, and require only elementary results about quasiconformal mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973.

    MATH  Google Scholar 

  2. L. V. Ahlfors, Complex Analysis, third edn., McGraw-Hill Book Co., New York, 1978.

    Google Scholar 

  3. L. V. Ahlfors, Lectures on Quasiconformal Mappings, second edn., University Lecture Series, Vol. 38, American Mathematical Society, Providence, RI, 2006.

    MATH  Google Scholar 

  4. L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton Mathematical Series, Vol. 26, Princeton University Press, Princeton, NJ, 1960.

    MATH  Google Scholar 

  5. M. G. Arsove, The Osgood-Taylor-Carathéodory theorem, Proceedings of the American Mathematical Society 19 (1968), 38–44.

    MATH  MathSciNet  Google Scholar 

  6. L. Bers, Quasiconformal mappings, with applications to differential equations, function theory and topology, Bulletin of the American Mathematical Society 83 (1977), 1083–1100.

    Article  MATH  MathSciNet  Google Scholar 

  7. Shiing-shen Chern, An elementary proof of the existence of isothermal parameters on a surface, Proceedings of the American Mathematical Society 6 (1955), 771–782.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Costello, A dual version of the ribbon graph decomposition of moduli space, Geometry and Topology 11 (2007), 1637–1652.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Costello, Topological conformal field theories and Calabi-Yau categories, Advances in Mathematics 210 (2007), 165–214.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. J. Earle and C. McMullen, Quasiconformal isotopies, in Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), Mathematical Sciences Research Institute Publications, Vol. 10, Springer, New York, 1988, pp. 143–154.

    Chapter  Google Scholar 

  11. B. Farb and D. Margalit, A Primer on Mapping Class Group, Princeton Mathematical Series, Vol. 59, Princeton University Press, Princeton, NJ, 2012.

    Google Scholar 

  12. A. Fletcher and V. Markovic, Quasiconformal Maps and Teichmüller Theory, Oxford Graduate Texts in Mathematics, Vol. 11, Oxford University Press, Oxford, 2007.

    MATH  Google Scholar 

  13. F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, Vol. 76, American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  14. A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  15. Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller Spaces, Springer-Verlag, Tokyo, 1992.

    Book  MATH  Google Scholar 

  16. R. J. V. Jackson, On the boundary values of Riemann’s mapping function, Transactions of the American Mathematical Society 259 (1980), 281–297.

    MATH  MathSciNet  Google Scholar 

  17. O. Lehto, Univalent Functions and Teichmüller Spaces, Graduate Texts in Mathematics, Vol. 109, Springer-Verlag, New York, 1987.

    MATH  Google Scholar 

  18. O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, second edn., Springer-Verlag, New York, 1973.

    Book  MATH  Google Scholar 

  19. S. Mac Lane, Categories for the Working Mathematician, second edn., Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York, 1998.

    MATH  Google Scholar 

  20. S. Nag, The Complex Analytic Theory of Teichmüller Spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1988.

    MATH  Google Scholar 

  21. M. H. A. Newman, Elements of the Topology of Plane Sets of Points, second edn., Dover Publications Inc., New York, 1992.

    MATH  Google Scholar 

  22. G. Segal, The definition of conformal field theory, in Topology, Geometry and Quantum Field Theory, London Mathematical Society Lecture Note Series, Vol. 308, Cambridge University Press, Cambridge, 2004, pp. 421–577.

    Google Scholar 

  23. W. A. Veech, A Second Course in Complex Analysis, W. A. Benjamin, Inc., New York-Amsterdam, 1967.

    MATH  Google Scholar 

  24. A. Zernik, An invitation to topological conformal field theories, MSc. thesis, The Hebrew University of Jerusalem, 2010, also available on Arxiv: arXiv:1011.2700v1 [math.GT].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitai Zernik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zernik, A. Open conformal cobordisms. Isr. J. Math. 200, 297–325 (2014). https://doi.org/10.1007/s11856-014-0019-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-014-0019-1

Keywords

Navigation