Skip to main content
Log in

Atomic-Scale Interfacial Structure in Rock Salt and Tetradymite Chalcogenide Thermoelectric Materials

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Interfaces play important roles in the performance of nanostructured thermoelectric materials. However, our understanding of the atomic-scale structure of these interfaces is only beginning to emerge. In this overview article, we highlight and review several examples illustrating aspects of interfacial structure in the rock salt and tetradymite classes of chalcogenide materials. The chalcogenide compounds encompass some of the most successful and well-understood thermoelectric materials employed in actual application and are also relevant more broadly in diverse fields including phase-change memory materials, infrared radiation detection, and topological insulators. The examples we consider here focus in three areas: the influence of weak interlayer bonding on grain boundary structure in Bi2Te3, crystallographic alignment and interfacial coherency in rock salt and related cubic chalcogenides, and the structure of interfaces at tetradymite precipitates in a rock salt chalcogenide matrix. The complex interfaces in these systems can be understood and generalized by considering the similarities between the rock salt, tetradymite, and related structures and by analyzing of the relevant interfacial defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nature Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. D.L. Medlin and G.J. Snyder, Curr. Opin. Colloid Interface. Sci. 14, 226 (2009).

    Article  Google Scholar 

  4. M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Article  Google Scholar 

  5. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  6. D.M. Rowe, V.S. Shukla, and N. Savvides, Nature 290, 765 (1981).

    Article  Google Scholar 

  7. J.W. Sharp, S.J. Poon, and H.J. Goldsmid, Phys. Stat. Sol. (a) 187, 507 (2001).

    Article  Google Scholar 

  8. S.V. Faleev and F. Léonard, Phys. Rev. B 77, 214304 (2008).

    Article  Google Scholar 

  9. J.P. Heremans, C.M. Thrush, and D.T. Morelli, Phys. Rev. B 70, 115334 (2004).

    Article  Google Scholar 

  10. J.M.O. Zide, D. Vashaee, Z.X. Bian, G. Zeng, J.E. Bowers, A. Shakouri, and A.C. Gossard, Phys. Rev. B 74, 205335 (2006).

    Article  Google Scholar 

  11. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).

    Article  Google Scholar 

  12. T. Ikeda, S.M. Haile, V.A. Ravi, H. Azizgolshani, F. Gascoin, and G.J. Snyder, Acta Mater. 55, 1227 (2007).

    Article  Google Scholar 

  13. T. Ikeda, V. Ravi, and G. Snyder, Metall. Mater. Trans. A 41, 641 (2010).

    Article  Google Scholar 

  14. T. Ikeda, L.A. Collins, V.A. Ravi, F.S. Gascoin, S.M. Haile, and G.J. Snyder, Chem. Mater. 19, 763 (2007).

    Article  Google Scholar 

  15. T. Ikeda, E.S. Toberer, V.A. Ravi, G.J. Snyder, S. Aoyagi, E. Nishibori, and M. Sakata, Scr. Mater. 60, 321 (2009).

    Article  Google Scholar 

  16. T. Ikeda, V. Ravi, and G.J. Snyder, Acta Mater. 57, 666 (2009).

    Article  Google Scholar 

  17. T. Ikeda, N.J. Marolf, K. Bergum, M.B. Toussaint, N.A. Heinz, V.A. Ravi, and G.J. Snyder, Acta Mater. 59, 2679 (2011).

    Article  Google Scholar 

  18. Z.H. Dughaish, Phys. B 322, 205 (2002).

    Article  Google Scholar 

  19. A.D. LaLonde, Y. Pei, H. Wang, and G.J. Snyder, Mater. Today 14, 526 (2011).

    Article  Google Scholar 

  20. E.A. Skrabek and D.S. Trimmer, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 1995), pp. 267–275.

  21. H. Scherrer and S. Scherrer, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC Press Inc., 1995), pp. 211–237.

  22. H. Scherrer and S. Scherrer, Thermoelectrics Handbook Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 2006), pp. 27:1–18.

  23. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  24. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, J. Appl. Phys. 105, 113713 (2009).

    Article  Google Scholar 

  25. R. Detemple, D. Wamwangi, M. Wuttig, and G. Bihlmayer, Appl. Phys. Lett. 83, 2572 (2003).

    Article  Google Scholar 

  26. M.N. Schneider, T. Rosenthal, C. Stiewe, and O. Oeckler, Z. Kristallogr. 225, 463 (2010).

    Article  Google Scholar 

  27. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  Google Scholar 

  28. H. Zogg, A. Fach, C. Maissen, J. Masek, and S. Blunier, Opt. Eng. 33, 1440 (1994).

    Article  Google Scholar 

  29. M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  Google Scholar 

  30. S. Geller, Acta Crystallogr. 12, 46 (1959).

    Article  Google Scholar 

  31. F.D. Rosi, E.F. Hockings, and N.E. Lindenblad, RCA Rev. 22, 82 (1961).

    Google Scholar 

  32. D.T. Morelli, V. Jovovic, and J.P. Heremans, Phys. Rev. Lett. 101, 035901 (2008).

    Article  Google Scholar 

  33. V. Jovovic and J.P. Heremans, J. Electron. Mater. 38, 1504 (2009).

    Article  Google Scholar 

  34. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  Google Scholar 

  35. A.J. Thompson, J.W. Sharp, and C.J. Rawn, J. Electron. Mater. 38, 1407 (2009).

    Article  Google Scholar 

  36. Y. Chen, M.D. Nielsen, Y.-B. Gao, T.-J. Zhu, X. Zhao, and J.P. Heremans, Adv. Energy Mater. 2, 58 (2012).

    Article  Google Scholar 

  37. S. Gorsse, P. Bellanger, Y. Brechet, E. Sellier, A. Umargi, U. Ail, and R. Decourt, Acta Mater. 59, 7425 (2011).

    Article  Google Scholar 

  38. Y. Rosenberg, Y. Gelbstein, and M.P. Dariel, J. Alloys Compd. 526, 31 (2012).

    Article  Google Scholar 

  39. J. Goldak, C.S. Barrett, D. Innes, and W. Youdelis, J. Chem. Phys. 44, 3323 (1966).

    Article  Google Scholar 

  40. P.B. Littlewood, J. Phys. C 13, 4875 (1980).

    Article  Google Scholar 

  41. M. Snykers, P. Delavignette, and S. Amelinckx, Mater. Res. Bull. 7, 831 (1972).

    Article  Google Scholar 

  42. B.A. Cook, M.J. Kramer, X. Wei, J.L. Harringa, and E.M. Levin, J. Appl. Phys. 101, 053715 (2007).

    Article  Google Scholar 

  43. N.J. Cook, C.L. Ciobanu, T. Wagner, and C.J. Stanley, Can. Mineral. 45, 665 (2007).

    Article  Google Scholar 

  44. N. Frangis, S. Kuypers, C. Manolikas, G.V. Tendeloo, J.V. Landuyt, and S. Amelinckx, J. Solid State Chem. 84, 314 (1990).

    Article  Google Scholar 

  45. J.R. Drabble and C.H.L. Goodman, J. Phys. Chem. Solids 5, 142 (1958).

    Article  Google Scholar 

  46. J.R. Wiese and L. Muldawer, J. Phys. Chem. Solids 15, 13 (1960).

    Article  Google Scholar 

  47. H. Lind, S. Lidin, and U. Häussermann, Phys. Rev. B 72, 184101 (2005).

    Article  Google Scholar 

  48. J.W.G. Bos, F. Faucheux, R.A. Downie, and A. Marcinkova, J. Solid State Chem. 193, 13 (2012).

    Article  Google Scholar 

  49. J.W.G. Bos, H.W. Zandbergen, M.-H. Lee, N.P. Ong, and R.J. Cava, Phys. Rev. B 75, 195203 (2007).

    Article  Google Scholar 

  50. P.A. Sharma, A.L.L. Sharma, D.L. Medlin, A.M. Morales, N. Yang, M. Barney, J. He, F. Drymiotis, J. Turner, and T.M. Tritt, Phys. Rev. B 83, 235209 (2011).

    Article  Google Scholar 

  51. S. Kuypers, G.V. Tendeloo, J.V. Landuyt, and S. Amelinckx, J. Solid State Chem. 76, 102 (1988).

    Article  Google Scholar 

  52. O.G. Karpinskii, L.E. Shelimova, E.S. Avilov, M.A. Kretova, and V.S. Zemskov, Inorg. Mater. 38, 17 (2002).

    Article  Google Scholar 

  53. L.A. Kuznetsova, V.L. Kuznetsov, and D.M. Rowe, J. Phys. Chem. Solids 61, 1269 (2000).

    Article  Google Scholar 

  54. L.E. Shelimova, O.G. Karpinskii, T.E. Svechnikova, E.S. Avilov, M.A. Kretova, and V.S. Zemskov, Inorg. Mater. 40, 1264 (2004).

    Article  Google Scholar 

  55. J.D. Sugar and D.L. Medlin, J. Mater. Sci. 46, 1668 (2011).

    Article  Google Scholar 

  56. J.D. Keys and H.M. Dutton, J. Appl. Phys. 34, 1830 (1963).

    Article  Google Scholar 

  57. J.P. Fleurial, L. Gaillard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 49, 1237 (1988).

    Article  Google Scholar 

  58. S.S. Kim, F. Yin, and Y. Kagawa, J. Alloys Compd. 419, 306 (2006).

    Article  Google Scholar 

  59. O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, J. Appl. Phys. 101, 113707 (2007).

    Article  Google Scholar 

  60. X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, C.J. Xiao, and K. Li, J. Alloys Compd. 461, 9 (2008).

    Article  Google Scholar 

  61. N. Gothard, G. Wilks, T.M. Tritt, and J.E. Spoward, J. Electron. Mater. 39, 1909 (2010).

    Article  Google Scholar 

  62. C. André, D. Vasilevskiy, S. Turenne, and R.A. Masut, J. Electron. Mater. 38, 1061 (2009).

    Article  Google Scholar 

  63. J.J. Shen, L.P. Hu, T.J. Zhu, and X.B. Zhao, Appl. Phys. Lett. 99, 124102 (2011).

    Article  Google Scholar 

  64. L.P. Hu, X.H. Liu, H.H. Xie, J.J. Shen, T.J. Zhu, and X.B. Zhao, Acta Mater. 60, 4431 (2012).

    Article  Google Scholar 

  65. D.L. Medlin, Q.M. Ramasse, C.D. Spataru, and N.Y.C. Yang, J. Appl. Phys. 108, 043517 (2010).

    Article  Google Scholar 

  66. D.L. Medlin and N.Y.C. Yang, J. Electron. Mater. 41, 1456 (2012).

    Article  Google Scholar 

  67. I. Samaras, L. Papadimitriou, J. Stoemenos, and N.A. Economou, Thin Solid Films 115, 141 (1984).

    Article  Google Scholar 

  68. M. Tsuji, Y. Mizuno, Y. Susuki, and M. Mannami, J. Crystal Growth 108, 817 (1991).

    Article  Google Scholar 

  69. K. Wiesauer and G. Springholz, Appl. Surf. Sci. 188, 49 (2002).

    Article  Google Scholar 

  70. K. Wiesauer and G. Springholz, Appl. Phys. Lett. 83, 5160 (2003).

    Article  Google Scholar 

  71. K. Wiesauer and G. Springholz, Phys. Rev. B 69, 25313 (2004).

    Article  Google Scholar 

  72. E.I. Rogacheva, S.N. Grigorov, O.N. Nashchekina, T.V. Tavrina, S.G. Lyubchenko, A.Y. Sipatov, V.V. Volobuev, A.G. Fedorov, and M.S. Dresselhaus, Thin Solid Films 493, 41 (2005).

    Article  Google Scholar 

  73. E. Wintersberger, N. Hrauda, D. Kriegner, M. Keplinger, G. Springholz, J. Stangl, G. Bauer, J. Oswald, T. Belytschko, C. Deiter, F. Bertram, and O.H. Seeck, Appl. Phys. Lett. 96, 1–131905 (2012).

    Google Scholar 

  74. E. Quarez, K.-F. Hs, R. Pcionek, N. Frangis, E.K. Polychroniadis, and M.G. Kanatzidis, J. Am. Chem. Soc. 127, 9177 (2005).

    Article  Google Scholar 

  75. H. Lin, E.S. Bozin, S.J.L. Billinge, E. Quarez, and M.G. Kanatzidis, Phys. Rev. B 72, 174113 (2005).

    Article  Google Scholar 

  76. N. Chen, F. Gascoin, G.J. Snyder, E. Müller, G. Karpinski, and C. Stiewe, Appl. Phys. Lett. 87, 171903 (2005).

    Article  Google Scholar 

  77. H.J. Wu, S.W. Chen, T. Ikeda, and G.J. Snyder, Acta Mater. 60, 1129 (2012).

    Article  Google Scholar 

  78. T. Ikeda, S. Iwanaga, H.-J. Wu, N.J. Marolf, S.-W. Chen, and G.J. Snyder, J. Mater. Chem. 22, 24335 (2012).

    Article  Google Scholar 

  79. J. He, S.N. Girard, M.G. Kanatzidis, and V.P. Dravid, Adv. Funct. Mater. 20, 764 (2010).

    Article  Google Scholar 

  80. J. Androulakis, C.-H. Lin, H.-J. Lin, C. Uher, C.-I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, and M.G. Kanatzidis, J. Am. Chem. Soc. 129, 9780 (2007).

    Article  Google Scholar 

  81. K. Biswas, J. He, G. Wang, S.-H. Lo, C. Uher, and M.G. Kanatzidis, Energy & Environ. Sci. 4, 4675 (2011).

    Article  Google Scholar 

  82. L.-D. Zhao, J. He, C.-I. Wu, T.P. Hogan, X. Zhou, C. Uher, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 134, 7902 (2012).

    Article  Google Scholar 

  83. B.A. Cook, M.J. Kramer, J.L. Harringa, M.-K. Han, D.-Y. Chung, and M.G. Kanatzidis, Adv. Funct. Mater. 19, 1254 (2009).

    Article  Google Scholar 

  84. J.D. Sugar and D.L. Medlin, J. Alloys Compd. 478, 75 (2009).

    Article  Google Scholar 

  85. J. Lensch-Falk, J.D. Sugar, M. Hekmaty, and D.L. Medlin, J. Alloys Compd. 504, 37 (2010).

    Article  Google Scholar 

  86. Y. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, and G.J. Snyder, Adv. Funct. Mater. 21, 241 (2011).

    Article  Google Scholar 

  87. R. Wolfe, J.H. Wernick, and S.E. Haszko, J. Appl. Phys. 31, 1959 (1960).

    Article  Google Scholar 

  88. K. Bergum, T. Ikeda, and G.J. Snyder, J. Solid State Chem. 184, 2543 (2011).

    Article  Google Scholar 

  89. Y.Z. Pei, N.A. Heinz, A. LaLonde, and G.J. Snyder, Energy Environ. Sci. 4, 3640 (2011).

    Article  Google Scholar 

  90. J. Schneider and H. Schulz, Zeitschrift Kristallogr. 203, 1 (1993).

    Article  Google Scholar 

  91. C. Manolikas, J. Solid State Chem. 66, 1 (1987).

    Article  Google Scholar 

  92. J. He, J.R. Sootsman, S.N. Girard, J.-C. Zheng, J. Wen, Y. Zhu, M.G. Kanatzidis, and V.P. Dravid, J. Am. Chem. Soc. 132, 8669 (2010).

    Article  Google Scholar 

  93. S.V. Barabash, V. Ozolins, and C. Wolverton, Phys. Rev. B 78, 214109 (2008).

    Article  Google Scholar 

  94. J.W. Doak and C. Wolverton, Phys. Rev. B 86, 144202 (2012).

    Article  Google Scholar 

  95. W.A. Jesser, Philos. Magn. 19, 993 (1969).

    Article  Google Scholar 

  96. R.W. Armstrong, J.W. Faust, and W.A. Tiller, J. Appl. Phys. 31, 1954 (1960).

    Article  Google Scholar 

  97. T. Ikeda, N.J. Marolf, and G.J. Snyder, Cryst. Growth Des. 11, 4183 (2011).

    Article  Google Scholar 

  98. T. Ikeda, M.B. Toussaint, K. Bergum, S. Iwanaga, and G.J. Snyder, J. Mater. Sci. 46, 3846 (2011).

    Article  Google Scholar 

  99. N.A. Heinz, T. Ikeda, and G.J. Snyder, Acta Mater. 60, 4461 (2012).

    Article  Google Scholar 

  100. X. Chen, S. Cao, T. Ikeda, V. Srivastava, G.J. Snyder, D. Schryvers, and R.D. James, Acta Mater. 59, 6124 (2011).

    Article  Google Scholar 

  101. D.L. Medlin and J.D. Sugar, Scripta Mater. 62, 379 (2010).

    Article  Google Scholar 

  102. N.A. Heinz, T. Ikeda, G.J. Snyder, and D.L. Medlin, Acta Mater. 59, 7724 (2011).

    Article  Google Scholar 

  103. J.P. Hirth, J. Phys. Chem. Solids 55, 985 (1994).

    Article  Google Scholar 

  104. J.P. Hirth and R.C. Pond, Acta Mater. 44, 4749 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for many helpful and illuminating discussions with our colleagues concerning interfaces and phase stability in the chalcogenides. Particular acknowledgements go to J. Lensch-Falk, P. Sharma, J. Sugar, C. Spataru, and N. Yang at Sandia and to N. Heinz and T. Ikeda at Caltech. G.J.S. thanks the AFOSR-MURI program for funding. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. Support was provided in part by Sandia’s Laboratory-Directed Research and Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Medlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medlin, D.L., Snyder, G.J. Atomic-Scale Interfacial Structure in Rock Salt and Tetradymite Chalcogenide Thermoelectric Materials. JOM 65, 390–400 (2013). https://doi.org/10.1007/s11837-012-0530-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0530-y

Keywords

Navigation