Skip to main content
Log in

In Situ TEM Investigation of the Mechanical Behavior of Micronanoscaled Metal Pillars

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article, our most recent progress on applying a unique quantitative transmission electron microscope deformation technique on micronanoscaled metal pillars will be reviewed. We found that single-crystal pillars fabricated through focused ion beam always contain high density of defects. However, if the sample size is small enough, then both face-centered-cubic metals and body-centered-cubic metal pillars can experience “mechanical annealing,” i.e., a phenomena referring to the reduction of dislocation density in the deforming volume, when dislocation generation is outweighed by dislocation annihilation through the free surface. We also found that when the sample size was reduced below 1 μm or so, stress saturation and deformation mechanism transition occurred in a hexagonal-close-packed Ti alloy. Unlike crystalline materials, metallic glasses do not allow the presence and movement of dislocations or deformation twinning. However, we demonstrated the metallic glasses also follow the well-established tenet for crystalline materials: i.e., smaller is stronger and can reach its theoretical elastic limit under appropriate testing conditions. In addition, for the tested size regime, we found that high-energy electron beam has no obvious effect on the mechanical properties of materials with metallic bond. However, for materials with covalent bond and ionic bond, significant electron beam effects have been confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986 (2004).

    Article  Google Scholar 

  2. M.D. Uchic, P.A. Shade, and D.M. Dimiduk, Annual Review of Materials Research, vol. 39 (Palo Alto, CA: Annual Reviews, 2009), pp. 361–386.

  3. S.H. Oh, M. Legros, D. Kiener, and G. Dehm, Nat. Mater. 8, 95 (2009).

    Article  Google Scholar 

  4. Z.W. Shan, R.K. Mishra, S.A.S. Asif, O.L. Warren, and A.M. Minor, Nat. Mater. 7, 115 (2008).

    Article  Google Scholar 

  5. J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Mater. 53, 1821 (2005).

    Article  Google Scholar 

  6. W.D. Nix, J.R. Greer, G. Feng, and E.T. Lilleodden, Thin Solid Films 515, 3152 (2007).

    Article  Google Scholar 

  7. L. Huang, Q.J. Li, Z.W. Shan, J. Li, J. Sun, and E. Ma, Nat. Commun. 2, 579 (2011).

    Article  Google Scholar 

  8. C. Chisholm, H. Bei, M.B. Lowry, J. Oh, S.A.A. Asif, O.L. Warren, Z.W. Shan, E.P. George, and A.M. Minor, Acta Mater. 60, 2258 (2012).

    Article  Google Scholar 

  9. Q. Yu, Z.W. Shan, J. Li, X.X. Huang, L. Xiao, J. Sun, and E. Ma, Nature 463, 335 (2010).

    Article  Google Scholar 

  10. L. Tian, Y.Q. Cheng, Z.W. Shan, J. Li, C.C. Wang, X.D. Han, J. Sun, and E. Ma, Nat. Commun. 3, 609 (2012).

    Article  Google Scholar 

  11. Z.W. Shan, J. Li, Y.Q. Cheng, A.M. Minor, S.A.S. Asif, O.L. Warren, and E. Ma, Phys. Rev. B 77, 155419 (2008).

    Article  Google Scholar 

  12. K. Zheng, C.C. Wang, Y.Q. Cheng, Y.H. Yue, X.D. Han, Z. Zhang, Z.W. Shan, S.X. Mao, M.M. Ye, Y.D. Yin, and E. Ma, Nat. Commun. 1, 144 (2010).

    Article  Google Scholar 

  13. O. Kraft, P.A. Gruber, R. Moenig, and D. Weygand, Annual Review of Materials Research, vol. 40, ed. D.R.R.M.Z.F. Clarke (Palo Alto, CA: Annual Reviews, 2010), pp. 293–317.

  14. D.S. Gianola and C. Eberl, JOM 61, 24 (2009).

    Article  Google Scholar 

  15. S.S. Brenner, J. Appl. Phys. 27, 1484 (1956).

    Article  Google Scholar 

  16. S.S. Brenner, J. Appl. Phys. 28, 1023 (1957).

    Article  Google Scholar 

  17. S.S. Brenner, Science 128, 568 (1958).

    Article  Google Scholar 

  18. A.M. Minor, S.A.S. Asif, Z.W. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, and O.L. Warren, Nat. Mater. 5, 697 (2006).

    Article  Google Scholar 

  19. J. Weertman and J.R. Weertman, Elementary Dislocation Theory (New York, NY: Oxford University Press, 1992), pp. 11, 213.

  20. Z.J. Wang, Q.J. Li, Z.W. Shan, J. Li, J. Sun, and E. Ma, Appl. Phys. Lett. 100, 122405 (2012).

    Article  Google Scholar 

  21. D. Kiener and A.M. Minor, Acta Mater. 59, 1328 (2011).

    Article  Google Scholar 

  22. C.R. Weinberger and W. Cai, Proc. Natl. Acad. Sci. USA 105, 14304 (2008).

    Article  Google Scholar 

  23. J.R. Greer, C.R. Weinberger, and W. Cai, Mater. Sci. Eng. A 493, 21 (2008).

    Article  Google Scholar 

  24. J.Y. Kim and J.R. Greer, Appl. Phys. Lett. 93, 10916 (2008).

    Google Scholar 

  25. S. Brinckmann, J.Y. Kim, and J.R. Greer, Phys. Rev. Lett. 100, 155502 (2008).

    Article  Google Scholar 

  26. J.R. Greer, C.R. Weinberger, and W. Cai, Mater. Sci. Eng. A 493, 21 (2008).

    Article  Google Scholar 

  27. M.A. Meyers, O. Vohringer, and V.A. Lubarda, Acta Mater. 49, 4025 (2001).

    Article  Google Scholar 

  28. J.A. Knapp and D.M. Follstaedt, J. Mater. Res. 19, 218 (2004).

    Article  Google Scholar 

  29. M.D. Uchic, P.A. Shade, and D.M. Dimiduk, JOM 61 (3), 36 (2009).

    Article  Google Scholar 

  30. O. Kraft, Nat. Mater. 9, 295 (2010).

    Article  Google Scholar 

  31. Y.Q. Cheng and E. Ma, Acta Mater. 59, 1800 (2011).

    Article  Google Scholar 

  32. C.C. Wang, J. Ding, Y.Q. Cheng, J.C. Wan, L. Tian, J. Sun, Z.W. Shan, J. Li, and E. Ma, Acta Mater. 60, 5370 (2012).

    Article  Google Scholar 

  33. D.C. Jang and J.R. Greer, Nat. Mater. 9, 215 (2010).

    Google Scholar 

  34. Z.J. Wang, Z.W. Shan, J. Li, J. Sun, and E. Ma, Acta Mater. 60, 1368 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants from NSFC (50925104 and 11132006) and 973 Programs of China (2010CB631003). We also appreciate the support from the 111 Project of China (B06025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Shan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, Z. In Situ TEM Investigation of the Mechanical Behavior of Micronanoscaled Metal Pillars. JOM 64, 1229–1234 (2012). https://doi.org/10.1007/s11837-012-0436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0436-8

Keywords

Navigation