Skip to main content
Log in

Bulk metallic glasses for biomedical applications

  • Biomedical Materials and Devices
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The selection criteria for biomaterials include the material’s properties and biocompatibility, and the ability to fabricate the desired shapes. Bulk metallic glasses (BMGs) are relative newcomers in the field of biomaterials but they exhibit an excellent combination of properties and processing capabilities desired for versatile implant applications. To further evaluate the suitability of BMGs for biomedical applications, we analyzed the biological responses they elicited in vitro and in vivo. The BMGs promoted cell adhesion and growth in vitro and induced improved foreign body responses in vivo suggesting their potential use as biomaterials. Because of the BMGs’ flexible chemistry, atomic structure, and surface topography, they offer a unique opportunity to fabricate complex implants and devices with a desirable biological response from a material with superior properties over currently used metallic biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Baden, “Prosthetic Therapy of Congenital and Aquired Clefts on the Palate: An Historical Essay,” J. Hist. Med. Alld. Sci., X(3) (1955), pp. 290–301; doi: 10.1093/jhmas/X.3.290.

    Article  Google Scholar 

  2. W.L. Johnson, “Bulk Glass-forming Metallic Alloys: Science and Technology,” MRS Bulletin, 24(10) (1999), pp. 42–56.

    CAS  Google Scholar 

  3. J. Schroers and N. Paton, “Amorphous Metal Alloys Form Like Plastics,” Advanced Materials & Processes, 164(1) (2006), pp. 61–63.

    CAS  Google Scholar 

  4. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, “Overview No.144—Mechanical Behavior of Amorphous Alloys,” Acta Materialia, 55(12) (2007), pp. 4067–4109.

    Article  CAS  Google Scholar 

  5. M.F. Ashby and A.L. Greer, “Metallic Glasses as Structural Materials,” Scripta Materialia, 54(3) (2006), pp. 321–326.

    Article  CAS  Google Scholar 

  6. A. Inoue, T. Zhang, and T. Masumoto, “Zr-Al-Ni Amorphous-Alloys with High Glass-Transition Temperature and Significant Supercooled Liquid Region,” Materials Transactions JIM, 31(3) (1990), pp. 177–183.

    CAS  Google Scholar 

  7. K. Jin and J.F. Loffler, “Bulk Metallic Glass Formation in Zr-Cu-Fe-Al Alloys,” Applied Physics Letters, 86(24) (2005), 241909.

    Google Scholar 

  8. A. Peker and W.L. Johnson, “A Highly Processable Metallic-Glass—Zr41.2Ti13.8Cu12.5Ni10.0Be22.5,” Applied Physics Letters, 63(17) (1993), pp. 2342–2344.

    Article  ADS  Google Scholar 

  9. V. Ponnambalam, S.J. Poon, and G.J. Shiflet, “Fe-Mn-Cr-Mo-(Y,Ln)-C-B (Ln = lanthanides) Bulk Metallic Glasses as Formable Amorphous Steel Alloys,” J. Materials Research, 19(10) (2004), pp. 3046–3052.

    Article  ADS  CAS  Google Scholar 

  10. Z.P. Lu et al., “Structural Amorphous Steels,” Physical Review Letters, 92(24) (2004), 245503.

  11. Q.S. Zhang, W. Zhang, and A. Inoue, “New Cu-Zr-based Bulk Metallic Glasses with Large Diameters of up to 1.5 cm,” Scripta Materialia, 55(8) (2006), pp. 711–713.

    Article  CAS  Google Scholar 

  12. D.H. Xu et al., “Formation and Properties of New Ni-based Amorphous Alloys with Critical Casting Thickness up to 5 mm,” Acta Materialia, 52(12) (2004), pp. 3493–3497.

    Article  CAS  Google Scholar 

  13. X.H. Lin and W.L. Johnson, “Formation of Ti-Zr-Cu-Ni Bulk Metallic Glasses,” J. Applied Physics, 78(11) (1995), pp. 6514–6519.

    Article  ADS  CAS  Google Scholar 

  14. A. Inoue et al., “Mg-Cu-Y Amorphous-Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method,” Materials Transactions JIM, 32(7) (1991), pp. 609–616.

    CAS  Google Scholar 

  15. N. Nishiyama and A. Inoue, “Supercooling Investigation and Critical Cooling Rate for Glass Formation in P-Cu-Ni-P Alloy,” Acta Materialia, 47(5) (1999), pp. 1487–1495.

    Article  CAS  Google Scholar 

  16. J. Schroers et al., “Gold Based Bulk Metallic Glass,” Applied Physics Letters, 87(6) (2005), pp. 061912.

    Article  ADS  Google Scholar 

  17. J. Schroers and W.L. Johnson, “Highly Processable Bulk Metallic Glass-forming Alloys in the Pt-Co-Ni-Cu-P System,” Applied Physics Letters, 84(18) (2004), pp. 3666–3668.

    Article  ADS  CAS  Google Scholar 

  18. C.N. Elias et al., “Biomedical Applications of Titanium and Its Alloys,” JOM, 60(3) (2008), pp. 46–49.

    Article  CAS  Google Scholar 

  19. M.L. Morrison et al., “The Electrochemical Evaluation of a Zr-based Bulk Metallic Glass in a Phosphate-buffered Saline Electrolyte,” J. Biomedical Materials Research Part A, 74A(3) (2005), pp. 430–438.

    Article  CAS  Google Scholar 

  20. S. Buzzi et al., “Cytotoxicity of Zr-based Bulk Metallic Glasses,” Intermetallics, 14(7) (2006), pp. 729–734.

    Article  CAS  MathSciNet  Google Scholar 

  21. L. Liu et al., “Formation and Biocompatibility of Ni-free Zr60Nb5Cu20Fe5Al Bulk Metallic Glass,” Materials Transactions, 48(7) (2007), pp. 1879–1882.

    Article  CAS  Google Scholar 

  22. F. Variola et al., “Improving Biocompatibitity of Implantable Metals by Nanoscale Modification of Surfaces: An Overview of Strategies, Fabrication Methods, and Challenges,” Small, 5(9) (2009), pp. 996–1006.

    Article  PubMed  CAS  Google Scholar 

  23. T. Waniuk, J. Schroers, and W.L. Johnson, “Timescales of Crystallization and Viscous Flow of the Bulk Glass-forming Zr-Ti-Ni-Cu-Be Alloys,” Physical Review B, 67(18) (2003), p. 184203.

    Article  ADS  Google Scholar 

  24. S.M. Jay et al., “Foreign Body Giant Cell Formation is Preceded by Lamellipodia Formation and Can be Attenuated by Inhibition of Rac1 Activation,” American Journal of Pathology, 171(2) (2007), pp. 632–640.

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  25. W.M. Tian and T.R. Kyriakides, “Thrombospondin 2-null Mice Display an Altered Brain Foreign Body Response to Polyvinyl Alcohol Sponge Implants,” Biomedical Materials, 4(1) (2009), p. 015010.

    Article  ADS  Google Scholar 

  26. T.R. Kyriakides et al., “Mice that Lack the Angiogenesis Inhibitor, Thrombospondin 2, Mount an Altered Foreign Body Reaction Characterized by Increased Vascularity,” Proceedings of the National Academy of Sciences of the United States of America, 96(8) (1999), pp. 4449–4454.

    Article  PubMed  ADS  CAS  Google Scholar 

  27. D.D. Deligianni et al., “Effect of Surface Roughness of the Titanium Alloy Ti-6Al-4V on Human Bone Marrow Cell Response and on Protein Adsorption,” Biomaterials, 22(11) (2001), pp. 1241–1251.

    Article  PubMed  CAS  Google Scholar 

  28. A. Curtis and C. Wilkinson, “Topographical Control of Cells,” Biomaterials, 18(24) (1997), pp. 1573–1583.

    Article  PubMed  CAS  Google Scholar 

  29. I. Degasne et al., “Effects of Roughness, Fibronectin and Vitronectin on Attachment, Spreading, and Proliferation of Human Osteoblast-like Cells (Saos-2) on Titanium Surfaces,” Calcified Tissue International, 64(6) (1999), pp. 499–507.

    Article  PubMed  CAS  Google Scholar 

  30. J.M. Anderson, A. Rodriguez, and D.T. Chang, “Foreign Body Reaction to Biomaterials,” Seminars in Immunology, 20(2) (2008), pp. 86–100.

    Article  PubMed  CAS  Google Scholar 

  31. T.R. Kyriakides et al., “Altered Extracellular Matrix Remodeling and Angiogenesis in Sponge Granulomas of Thrombospondin 2-null Mice,” American Journal of Pathology, 159(4) (2001), pp. 1255–1262.

    PubMed  CAS  Google Scholar 

  32. D. Bogdanski et al., “Easy Assessment of the Biocompatibility of Ni-Ti Alloys by in Vitro Cell Culture Experiments on a Functionally Graded Ni-NiTi-Ti Material,” Biomaterials, 23(23) (2002), pp. 4549–4555.

    Article  PubMed  CAS  Google Scholar 

  33. J. Choi et al., “Calcium Phosphate Coating of Nickel-titanium Shape-memory Alloys, Coating Procedure and Adherence of Leukocytes and Platelets,” Biomaterials, 24(21) (2003), pp. 3689–3696.

    Article  PubMed  CAS  Google Scholar 

  34. J. Schroers, “The Superplastic Forming of Bulk Metallic Glasses,” JOM, 57(5) (2005), pp. 35–39.

    Article  ADS  CAS  Google Scholar 

  35. C.J. Gilbert, R.O. Ritchie, and W.L. Johnson, “Fracture Toughness and Fatigue-crack Propagation in a Zr-Ti-Ni-Cu-Be Bulk Metallic Glass,” Applied Physics Letters, 71(4) (1997), pp. 476–478.

    Article  ADS  CAS  Google Scholar 

  36. J. Schroers et al., “Transition from Nucleation Controlled to Growth Controlled Crystallization in Pd43Ni10Cu27P20 Melts,” Acta Materialia, 49(14) (2001), pp. 2773–2781.

    Article  CAS  Google Scholar 

  37. J. Schroers, Y. Wu, and W.L. Johnson, “Heterogeneous Influences on the Crystallization of Pd43Ni10Cu27P20,” Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 82(6) (2002), pp. 1207–1217.

    ADS  CAS  Google Scholar 

  38. A. Wiest et al., “Zr-Ti-based Be-bearing Glasses Optimized for High Thermal Stability and Thermoplastic Formability,” Acta Materialia, 56(11) (2008), pp. 2625–2630.

    Article  CAS  Google Scholar 

  39. J. Schroers et al., “Gold Based Bulk Metallic Glass,” Applied Physics Letters, 87(6) (2005), p. 61912.

    Article  Google Scholar 

  40. J. Schroers, “On the Formability of Bulk Metallic Glass in its Supercooled Liquid State,” Acta Materialia, 56(3) (2008), pp. 471–478.

    Article  CAS  Google Scholar 

  41. G. Kumar, H.X. Tang, and J. Schroers, “Nanomoulding with Amorphous Metals,” Nature, 457(7231) (2009), pp. 868–U128.

    Article  PubMed  ADS  CAS  Google Scholar 

  42. R. Busch, J. Schroers, and W.H. Wang, “Thermodynamics and Kinetics of Bulk Metallic Glass,” MRS Bulletin, 32(8) (2007), pp. 620–623.

    CAS  Google Scholar 

  43. J. Schroers, Q. Pham, and A. Desai, “Thermoplastic Forming of Bulk Metallic Glass—A Technology for MEMS and Microstructure Fabrication,” J. Microelectromechanical Systems, 16(2) (2007), pp. 240–247.

    Article  CAS  Google Scholar 

  44. J. Schroers et al., “Blow Molding of Bulk Metallic Glass,” Scripta Materialia, 57(4) (2007), pp. 341–344.

    Article  CAS  Google Scholar 

  45. J. Schroers et al., “Synthesis Method for Amorphous Metallic Foam,” J. Applied Physics, 96(12) (2004), pp. 7723–7730.

    Article  ADS  CAS  Google Scholar 

  46. M.D. Demetriou et al., “High Porosity Metallic Glass Foam: A Powder Metallurgy Route,” Applied Physics Letters, 91(16) (2007), p. 161903.

    Article  ADS  Google Scholar 

  47. T. Wada et al., “Supercooled Liquid Foaming of a Zr-Al-Cu-Ag Bulk Metallic Glass Containing Pressurized Helium Pores,” Materials Letters, 63(11) (2009), pp. 858–860.

    Article  CAS  MathSciNet  Google Scholar 

  48. A. Kurella and N.B. Dahotre, “Review Paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering,” J. Biomaterials Applications, 20(1) (2005), pp. 5–50.

    Article  Google Scholar 

  49. J. Tan and W.M. Saltzman, “Topographical Control of Human Neutrophil Motility on Micropatterned Materials with Various Surface Chemistry,” Biomaterials, 23(15) (2002), pp. 3215–3225.

    Article  PubMed  CAS  Google Scholar 

  50. J. Tan and W.M. Saltzman, “Biomaterials with Hierarchically Defined Micro- and Nanoscale Structure,” Biomaterials, 25(17) (2004), pp. 3593–3601.

    Article  PubMed  CAS  Google Scholar 

  51. N. Nath et al., “Surface Engineering Strategies for Control of Protein and Cell Interactions,” Surface Science, 570(1–2) (2004), pp. 98–110.

    Article  ADS  CAS  MathSciNet  Google Scholar 

  52. C.C. Berry et al., “The Influence of Microscale Topography on Fibroblast Attachment and Motility,” Biomaterials, 25(26) (2004), pp. 5781–5788.

    Article  PubMed  CAS  Google Scholar 

  53. H. Choi-Yim et al., “Quasistatic and Dynamic Deformation of Tungsten Reinforced Zr57Nb5Al10Cu15.4Ni12.6 Bulk Metallic Glass Matrix Composites,” Scripta Materialia, 45(9) (2001), pp. 1039–1045.

    Article  CAS  Google Scholar 

  54. P. Roach et al., “Modern Biomaterials: A Review—Bulk Properties and Implications of Surface Modifications,” J. Materials Science-Materials in Medicine, 18(7) (2007), pp. 1263–1277.

    Article  CAS  Google Scholar 

  55. N. Melikian and W. Wijns, “Drug-eluting Stents: A Critique,” Heart, 94(2) (2008), pp. 145–152.

    Article  PubMed  CAS  Google Scholar 

  56. T.F. Luscher et al., “Drug-eluting Stent and Coronary Thrombosis-Biological Mechanisms and Clinical Implications,” Circulation, 115(8) (2007), pp. 1051–1058.

    Article  PubMed  Google Scholar 

  57. V.S. Polikov, P.A. Tresco, and W.M. Reichert, “Response of Brain Tissue to Chronically Implanted Neural Electrodes,” J. Neuroscience Methods, 148(1) (2005), pp. 1–18.

    Article  Google Scholar 

  58. S. Takeuchi et al., “3D Flexible Multichannel Neural Probe Array,” J. Micromechanics and Microengineering, 14(1) (2004), pp. 104–107.

    Article  ADS  Google Scholar 

  59. S. Takeuchi et al., “Parylene Flexible Neural Probes Integrated with Microfluidic Channels,” Lab on a Chip, 5(5) (2005), pp. 519–523.

    Article  PubMed  CAS  Google Scholar 

  60. A. Completo, F. Fonseca, and J.A. Simoes, “Strain Shielding in Proximal Tibia of Stemmed Knee Prosthesis: Experimental Study,” J. Biomechanics, 41(3) (2008), pp. 560–566.

    Article  CAS  Google Scholar 

  61. B.V. Krishna et al., “Engineered Porous Metals for Implants,” JOM, 60(5) (2008), pp. 45–48.

    Article  CAS  Google Scholar 

  62. M.F. Ashby, “The Mechanical Properties of Cellular Solids,” Metallurgical and Materials Transactions A, 14A (1983), pp. 1755–1769.

    ADS  Google Scholar 

  63. A.H. Brothers and D.C. Dunand, “Porous and Foamed Amorphous Metals,” MRS Bulletin, 32(8) (2007), pp. 639–643.

    CAS  Google Scholar 

  64. C.E. Campbell and A.F. Von Recum, “Microtopography and Soft Tissue Response,” J. Invest. Surg., 2 (1989), pp. 51–74.

    Article  PubMed  CAS  Google Scholar 

  65. A.H. Brothers and D.C. Dunand, “Syntactic Bulk Metallic Glass Foam,” Applied Physics Letters, 84(7) (2004), pp. 1108–1110.

    Article  ADS  CAS  Google Scholar 

  66. T. Wada and A. Inoue, “Formation of Porous Pd-based Bulk Glassy Alloys by a High Hydrogen Pressure Melting-Water Quenching Method and Their Mechanical Properties,” Materials Transactions, 45(8) (2004), pp. 2761–2765.

    Article  CAS  Google Scholar 

  67. J. Jayaraj et al., “Nanometer-sized Porous Ti-based Metallic Glass,” Scripta Materialia, 55(11) (2006), pp. 1063–1066.

    Article  CAS  Google Scholar 

  68. J. Schroers, C. Veazey, and W.L. Johnson, “Amorphous Metallic Foam,” Applied Physics Letters, 82(3) (2003), pp. 370–372.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Schroers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroers, J., Kumar, G., Hodges, T.M. et al. Bulk metallic glasses for biomedical applications. JOM 61, 21–29 (2009). https://doi.org/10.1007/s11837-009-0128-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0128-1

Keywords

Navigation