Skip to main content

Advertisement

Log in

High-density plasma-arc heating studies of FePt thin films

  • Research Summary
  • Rapid/Pulse Thermal Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of pulsed-thermal-processing with high-density plasma arc heating is discussed for 20 nm thick nanocrystalline FePt thin films. The dependence of the A1→L10 phase transformation on pulsed time and radiant energy of the pulse is quantified through x-ray diffraction and alternating gradient magnetometry. For 100 ms and 250 ms pulse widths, the phase transformation was observed. Higher radiant energy densities resulted in a larger measured coercivity associated with the L10 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taken from the home page of Seagate, a leading hard drive manufacturer: www.seagate.com/newshinfo/technology/d4g.html.

  2. J. Numazawa and H. Ohshima, “Prospect of 1 T bits/in2 Video Data Storage using Perpendicular Magnetic Recording Tape,” J. Magn. Magn. Mater., 176 (1) (1997), pp. 1–7.

    Article  CAS  Google Scholar 

  3. M. Mallary, A. Torabi and M. Benakli, “One Terabit per Square Inch Perpendicular Recording Conceptual Design,” IEEE T. Magn. 38 (2002), pp. 1719–1724.

    Article  Google Scholar 

  4. D. Weller and A. Moser, “Thermal Effect Limits in Ultrahigh-Density Magnetic Recording,” IEEE T. Magn., 35 (6) (1999), pp. 4423–4439.

    Article  CAS  Google Scholar 

  5. K. Ouchl, “Recent Advancements in Perpendicular Magnetic Recording,” IEEE T. Magn. 37 (41) (2001), pp. 1217–1222.

    Article  Google Scholar 

  6. D. Weller et al., “High K Materials Approach to 100 Gbits/in2,” IEEE T. Magn., 36 (1) (2000), pp. 10–15.

    Article  CAS  Google Scholar 

  7. B. Zhang and W.A. Soffa, “The Structure and Properties of L1, Ordered Ferromagnets-CoPt, FePt, FePd, and MnAl,” Scripta Metall., 30 (6) (1994), pp. 683–688.

    Article  CAS  Google Scholar 

  8. D.E. Laughlin et al., “Crystallographic Aspects of L10 Magnetic Materials,” Scripta Mater., 53 (4) (2005), pp. 383–388.

    Article  CAS  Google Scholar 

  9. C.-M. Kuo, P.C. Kuo, and H.-C. Wu, “Microstructure and Magnetic Properties of Fe100−x Pt, Alloy Films,” J. Appl. Phys., 85 (4) (1999), pp. 2264–2269.

    Article  CAS  Google Scholar 

  10. M.F. Toney et al., “Thickness and Growth Temperature Dependence of Structure and Magnetism in FePt Thin Films,” J. Appl. Phys., 93 (12) (2003), pp. 9902–9907.

    Article  CAS  Google Scholar 

  11. R.D. Ott et al., “Pulse Thermal Processing (PTP) of Nanocrystalline Silicon Thin-Films,” JOM, 56 (10) (2004), pp. 45–47.

    CAS  Google Scholar 

  12. J.D.K. Rivard et al., “Advanced Manufacturing Technologies Utilizing High Density Infrared Radiant Heating,” Surf. Eng., 20 (3) (2004), pp. 220–228.

    Article  CAS  Google Scholar 

  13. T. Thrum et al., The Development of a Powerful Vortex Stabilized Flash Lamp for RTP Applications, Proceedings from the IEEE International Conference on Plasma Science (2003), p. 451.

  14. T. Thrum, A. Hewett, and D. Camm, “Experimental and Theoretical Determination of the Transient Radiation Characteristics of a High Power Water Vortex Stabilized Argon Arc Lamp,” IEEE International Conference on Plasma Science (2001), p. P2F03.

  15. S. Jeong, et al., “Magnetic Properties of Nanostructured CoPt and FePt Thin Films,” IEEE. T. Magn., 36(5) (2000), pp. 2336–2238.

    Article  CAS  Google Scholar 

  16. Y. Shao, M.L. Yan, and D.J. Sellmyer, “Effects of Rapid Thermal Annealing on Nanostructure, Texture and Magnetic, Properties of Granular FePt: Ag Films for Perpendicular Recording,” J. Appl. Phys., 93 (10) (2003), pp. 8152–8154.

    Article  CAS  Google Scholar 

  17. T. Shimatsu et al., “Thermal Fluctuations of Magnetization in Nanocrystalline FePt Thin Films with High Coercivity,” IEEE T. Magn., 35 (5) (1999), pp. 2697–2699.

    Article  CAS  Google Scholar 

  18. H. Zeng, et al., “Chemical Ordering of FePt Nanoparticle Self-Assemblies by Rapid Thermal Annealing,” J. Magn. Magn. Mater., 266 (2003), pp. 227–232.

    Article  CAS  Google Scholar 

  19. B.D. Cullity, S.R. Stock, and S. Stock, Elements of X-Ray Diffraction, 3rd Edition (Upper Saddle River, NJ: Prentice-Hall, 2001).

    Google Scholar 

  20. A. Cole et al., “Pulse Thermal Processing of FePt Thin Films,” manuscript under preparation (2006).

  21. B. Yang et al., “Equilibrium Monte Carlo Simulations of A1-L1 Ordering in FePt Nanoparticles,” Scripta Mater., 53 (2005), pp. 417–422.

    Article  CAS  Google Scholar 

  22. Y.K. Takahashi and K. Hono, Scripta Mater., 53 (2005), pp. 403–409.

    Article  CAS  Google Scholar 

  23. Y.K. Takahashi et al., “Size Dependence of Ordering in FePt Nanoparticles,” J. Appl. Phys. 95 (5) (2004), pp. 1–7.

    Article  CAS  Google Scholar 

  24. S.H. Whang, Q. Feng, and Y.Q. Gao, Acta Mater., 46 (18) (1998), pp. 6485–6495.

    Article  CAS  Google Scholar 

  25. R.F.C. Farrow et al., “Growth and Temperature Dependence of Long Range Alloy Order and Magnetic Properties of Epitaxial FePt1−x (X−0.5) Films,” Appl. Phys. Lett. 69(8) (1006), pp. 1166–1168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, A., Thompson, G.B., Harrell, J.W. et al. High-density plasma-arc heating studies of FePt thin films. JOM 58, 39–42 (2006). https://doi.org/10.1007/s11837-006-0179-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0179-5

Keywords

Navigation