Skip to main content

Advertisement

Log in

The physical metallurgy of nitinol for medical applications

JOM Aims and scope Submit manuscript

Abstract

The purpose of this paper is to review the current processing and resultant properties of Nitinol for medical device applications. The melting and fabrication of Nitinol present a number of unique challenges because of the strong sensitivity of the alloy system to chemistry and processing. The first part of this paper will summarize the effect of alloy fabrication on key material properties, vacuum-melting techniques, hot working, and cold working. The effects of the final shape-setting heat treatments on transformation temperature and mechanical properties for medical devices will also be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. D. Stöckel, Min. Invas. Ther. & Allied Technol., 9 (2000), pp. 81–88.

    Google Scholar 

  2. T.G. Frank, W. Xu, and A. Cuschieri, Proceedings of the International Conference on Shape Memory and Superelastic Technologies, ed. S.M. Russell and A.R. Pelton (Pacific Grove, CA: International Organization on SMST, 2001), pp. 549–560.

    Google Scholar 

  3. T. Duerig and M. Wholey, Min. Invas. Ther. & Allied Technol., 11 (2002), pp. 173–178.

    Article  Google Scholar 

  4. D. Stöckel, C. Bonsignore, and S. Duda, Min. Invas. Ther. & Allied Technol., 11 (2002), pp. 137–147.

    Article  Google Scholar 

  5. D. Stöckel, A.R. Pelton, and T. Duerig, Euro Rad. (to be published 2003).

  6. W. Buehler and F.E. Wang, Ocean Eng., 1 (1968), pp. 105–120.

    Article  Google Scholar 

  7. T.W. Duerig et al., eds., Engineering Aspects of Shape Memory Alloys (London: Butterworth-Heinemann Ltd., 1990).

    Google Scholar 

  8. H. Funakubo, ed., Shape Memory Alloys (New York: Gordon and Breach Science Publishers, 1987).

    Google Scholar 

  9. L.Mc. Schetky, “Shape Memory Alloys,” Scientific American, 241 (5) (1979), pp. 74–82.

    CAS  Google Scholar 

  10. J. Perkins, ed., Shape Memory Effects in Alloys (New York: Plenum Press, 1975).

    Google Scholar 

  11. T.W. Duerig and A.R. Pelton, “Ti-Ni Shape Memory Alloys,” Materials Properties Handbook: Titanium Alloys, ed. R. Boyer, G. Welsch, and E.W. Collings (Materials Park, OH: ASM International, 1994), pp. 1035–1048.

    Google Scholar 

  12. ASTM F 2004-00 Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis (West Conshohocken, PA: ASTM, 2002).

  13. C.M. Jackson, H.J. Wagner, and R.J. Wasilewski, NASA-SP 5110 (Washington, D.C.: DoE Technology Utilization Office, 1972).

    Google Scholar 

  14. ASTM F 2063-00 Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants (West Conshohocken, PA: ASTM, 2002).

  15. S.M. Russell and D.E. Hodgson, Min. Invas. Ther. & Allied Technol., 9 (2000), pp. 61–65.

    Google Scholar 

  16. S.M. Russell, Proceedings of the International Conference on Shape Memory and Superelastic Technologies, ed. S.M. Russell and A.R. Pelton (Pacific Grove, CA: International Organization on SMST, 2001), pp. 1–10.

    Google Scholar 

  17. A.R. Pelton, J. DiCello, and S. Miyazaki, Min. Invas. Ther. & Allied Technol., 9 (2000), pp. 107–118.

    Google Scholar 

  18. A.R. Pelton, J. DiCello, and S. Miyazaki, Proceedings of the International Conference on Shape Memory and Superelastic Technologies, ed. S.M. Russell and A.R. Pelton (Pacific Grove, CA: International Organization on SMST, 2001), pp. 361–374.

    Google Scholar 

  19. T.W. Duerig and R. Zadno, Engineering Aspects of Shape Memory Alloys, ed. T.W. Duerig et al. (London: Butterworth-Heinemann Ltd., 1990), pp. 369–393.

    Google Scholar 

  20. S. Miyazaki, Engineering Aspects of Shape Memory Alloys, ed. T.W. Duerig et al. (London: Butterworth-Heinemann Ltd., 1990), pp. 394–413.

    Google Scholar 

  21. M. Nishida, C.M. Wayman, and T. Honma, Met. Trans. A, 17A (1986), pp. 1505–1515.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact A.R. Pelton, Nitinol Devices & Components, a Johnson & Johnson Company, 47533 Westinghouse Drive, Fremont, California 94539 USA; (510) 623-6996; fax (510) 623-6808; e-mail apelton@ndcus.jnj.com.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelton, A.R., Russell, S.M. & DiCello, J. The physical metallurgy of nitinol for medical applications. JOM 55, 33–37 (2003). https://doi.org/10.1007/s11837-003-0243-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-003-0243-3

Keywords

Navigation