, Volume 7, Issue 2, pp 201-215
Date: 18 Nov 2012

Effects of drought, temperature, herbivory, and genotype on plant–insect interactions in soybean (Glycine max)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Climate change is predicted to cause continued increases in global temperatures, greater variability in precipitation and in some cases, more frequent insect pest outbreaks. Here we seek to understand how abiotic and biotic stresses associated with climate change can affect plant-herbivore interactions in a model crop species (soybean, Glycine max (L.) Merr.) by answering three questions: (1) Do the combined effects of abiotic and biotic stresses associated with climate change cause synergistic negative effects on plant biomass? (2) Can abiotic stress affect resistance of plants to insect herbivores? (3) Does genetic variation in plant traits modify a plant’s response to stress? We performed three experiments in controlled growth environments using up to 51 soybean genotypes selected to vary in numerous traits associated with drought and resistance against pests (e.g., insect herbivores, nematodes, and pathogenic fungi), and up to 3 generalist-feeding herbivorous noctuid moth species (Helicoverpa zea, Heliothis virescens, and Spodoptera exigua) that commonly feed on soybean in North America. Drought and herbivory had the largest and the most consistent negative effects on plant performance, reducing the above- and below-ground biomass by 10-45 %, whereas increased temperature had little to no effect on plants. Drought also increased susceptibility to generalist noctuid herbivores, but these results varied dramatically in magnitude and direction among plant genotypes. Our experiments show that the effects of abiotic and biotic stress on soybean biomass were largely due to the additive effects of these stresses, and there exists substantial genetic variation in the soybean germplasm pool we studied that could be used as a source of parental stock in breeding new crops that can more effectively tolerate and resist the combined negative effects of insect herbivory and drought.

Handling Editor: Michael Smith.