, Volume 31, Issue 11, pp 1954-1963
Date: 10 May 2014

Low Reynolds number flow of power-law fluids over two square cylinders in tandem

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The governing partial differential equations have been solved numerically for the 2-D and steady powerlaw fluid flow over two square cylinders in tandem arrangement. Extensive numerical results spanning wide ranges of the governing parameters as Reynolds number (0.1≤Re≤40), power-law index (0.2≤n≤1) and inter-cylinder spacing (2≤L/d≤6) are presented herein; limited results for L/d=24 are also obtained to approach the single cylinder behavior. The detailed flow visualization is done by means of the streamline and vorticity contours in the vicinity of two cylinders. The global characteristics are analyzed in terms of the surface pressure distribution and pressure drag coefficient. The drag coefficient shows the classical inverse dependence on the Reynolds number irrespective of the value of the powerlaw index; the drag on the upstream cylinder is always greater than that for the downstream cylinder.