, Volume 3, Issue 2, pp 183-190

Reconsidering melt-water pulses 1A and 1B: Global impacts of rapid sea-level rise

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Re-evaluation of the post-glacial sea level derived from the Barbados coral-reef borings suggests slightly revised depth ranges and timing of melt-water pulses MWP-1A (96–76m, 14.3–14.0ka cal BP) and IB (58–45m, 11.5–11.2ka cal BP), respectively. Ages of non-reef sea-level indicators from the Sunda Shelf, the East China Sea and Yellow Sea for these two intervals are unreliable because of the well-documented radiocarbon (14C) plateau, but their vertical clustering corresponds closely with MWP-1A and IB depth ranges. Close correlation of the revised sea-level curve with Greenland ice-core data suggests that the 14C plateau may be related to oceanographic-atmospheric changes due to rapid sea-level rise, fresh-water input, and impaired ocean circulation. MWP-1A appears to have occurred at the end of Bølling Warm Transition, suggesting that the rapid sea-level rise may have resulted from lateral heat transport from low to high-latitude regions and subsequent abrupt ice-sheet collapses in both North America-Europe and Antarctica. An around 70 mm a−1 transgression during MWP-1A may have increased freshwater discharge to the North Atlantic by as much as an order of magnitude, thereby disturbing thermohaline circulation and initiating the Older Dry as global cooling.