Physico-chemical properties and microstructure of hydroxyapatite-316L stainless steel biomaterials

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel (HA-316L SS) composites were investigated. The results show that the sintering shrinkage of HA-316L SS composites decreases from 27.38% to 8.87% for cylinder sample or from 27.18% to 8.62% for cuboid sample with decreasing the volume ratio of HA to 316L SS, which leads to higher sintering activity of HA compared with that of 316L SS. The compressive strength of HA-316L SS composites changes just like parabolic curve (245.3→126.3→202.8 MPa) with reducing the volume ratio of HA to 316L SS. Bending strength increases from 86.3MPa to 124.2 MPa with increasing the content of 316L SS. Furthermore, comprehensive mechanical properties of 1.0:3.0 (volume ratio of HA to 316L SS) composite are optimal with compressive strength and bending strength equal to 202.8 MPa and 124.2 MPa, respectively. The microstructure and metallurgical structure vary regularly with the volume ratio of HA to 316L SS. Some chemical reaction takes place at the interface of the composites during sintering.

Foundation item: Project (50174059) supported by the National Natural Science Foundation of China