Skip to main content
Log in

A novel rate control algorithm for video coding based on fuzzy-PID controller

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Rate control algorithms (RCAs) aim to achieve the best visual quality under the minimum bit rate and the limited buffer size. A self-parameter-tuning fuzzy-PID controller is proposed to reduce the deviation between the target buffer level and the current buffer fullness. Fuzzy logic is used to tune each parameter of the proportional-integral-derivative controller by selecting appropriate fuzzy rules through simulation in H.264/advanced video coding (AVC). To control the quality fluctuation between consecutive frames, a quality controller is adopted. The proposed RCA has been implemented in an H.264/AVC video codec, and our experimental results show that the proposed algorithm achieves smooth target bits while enabling better buffer control and visual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(n_{i,j}\) :

Number of frames in the \(j\)th frame of the \(i\)th GOP

Fr:

Frame rate

Bs:

Buffer size

\(R(n_{i,j})\) :

Output bits

\(Q(n_{i,j})\) :

Quantization parameter

\(u(n_{i,j})\) :

Available channel bandwidth

\(\mathrm{Np}(n_{i,j})\) :

Total number of the remaining inter-P-frames in the current GOP

\(\mathrm{Tr}(n_{i,j})\) :

Remaining bits in the GOP

\(\mathrm{TBL}(n_{i,j})\) :

Target buffer level

\(\mathrm{CBF}(n_{i,j})\) :

Current buffer fullness

References

  1. ISO/IEC AVC-491: TM5: MPEG-2 Test Model 5 (1993)

  2. ISO/IEC JTC1/SC29/WG11 W1796: Text of ISO/IEC 14 496–2 MPEG4 video VM -Version 8.0. Stockholm, Sweden (1997)

  3. MPEG-4 Committee Drafts, ISO/IEC 14496–2: Coding of moving pictures and associated audio (1998)

  4. Cote, G., Erol, B., Gallant, M., Kossentini, F.: H.263+: video coding at low bit rates. IEEE Trans. Circuits Syst. Video Technol. 8(7), 849–866 (1998)

    Article  Google Scholar 

  5. Li, Z.G., Pan, F., Lim, K.P., Feng, G.N.: Adaptive basic unit layer rate control for JVT. In: Proceedings of the 7th Meeting Joint Video Team ISO/IEC MPEG ITU-T VCEG, JVT-G012, Pattaya, Thailand, pp. 7–14 (2003)

  6. Zhou, Y., Sun, Y., Feng, Z., Sun, S.: New rate-distortion modeling and efficient rate control for H.264/AVC video coding. Signal Process. Image Commun. 24(5), 345–356 (2009)

    Article  Google Scholar 

  7. Leontaris, A., Tourapis, A.M.: Rate control reorganization in the JM reference software. In: Proceedings of the Joint Video Team ISO/IECMPEG ITU-T VCEG, JVT-W042, San Jose, CA (2007)

  8. Sun, Y., Ahmad, I.: A robust and adaptive rate control algorithm for object-based video coding. IEEE Trans. Circuits Syst. Video Technol. 14(10), 1167–1182 (2004)

    Article  Google Scholar 

  9. Shen, L., Zhang, Z., Li, Y., Liu, Z.: ”Improved H.264 GOP-level bit allocation by incremental PID algorithm. In: Proceedings of the IET Conference Wireless Mobile Sensor Networks, Dec 12–14, pp. 521–524 (2007)

  10. Xu, P., Zou, S., Li, Y., Xu, W.: A new linear rate control algorithm for H.264 based on PID controller. In: Proceedings IEEE ICIEA Conference, May 23–25, pp. 2058–2061 (2007)

  11. Zhou, Y., Sun, Y., Feng, Z., Sun, S.: PID-based bit allocation strategy for H.264/AVC rate control. IEEE Trans. Circuits Syst. II Express. Briefs 58(3), 184–188 (2011)

    Article  Google Scholar 

  12. Astrom, K.J., Hagglund, T., Hang, C.C., Ho, W.K.: Automatic tuning and adaptation for PID controllers—a survey. Control Eng. Pract. 1(4), 699–714 (1993)

    Article  Google Scholar 

  13. Bennett, S.: Development of the PID controller. IEEE Control Syst. Mag. 13(6), 58–65 (1993)

    Article  Google Scholar 

  14. Li, H.X.: A comparative design and tuning for conventional fuzzy control. IEEE Trans. Syst. Cybern. Part B Cybern. 27(5), 884–889 (1997)

    Article  Google Scholar 

  15. Tang, K.S., Man, K.F., Chen, G., Kwong, S.: An optimal fuzzy PID controller. IEEE Trans. Ind. Electron. 48(4), 757–765 (2001)

    Article  Google Scholar 

  16. Mann, G.K.I., Bao-Gang, H., Gosine, R.G.: Analysis of direct action fuzzy PID controller structures. IEEE Trans. Syst. Man Cybern. Part B 29(3), 371–388 (1999)

    Article  Google Scholar 

  17. Rezaei, M., Hannuksela, M.M., Gabbouj, M.: Semi-fuzzy rate controller for variable bit rate video. IEEE Trans. Circuits Syst. Video Technol. 18(5), 633–645 (2008)

    Article  Google Scholar 

  18. Shafei, M., Rezaei, M., Tavakoli, S., Mohanna, F.: A fuzzy bit allocation algorithm for variable bit rate video coding. In: Proceedings of the Machine Vision and Image Processing (MVIP), 7th Iranian, Nov 16–17, pp. 1–4 (2011)

  19. Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-O079: Text Description of Joint Model Reference Encoding Methods and Decoding Concealment Methods, Hong Kong (2005)

  20. Ichigaya, A., Kurozumi, M., Hara, N., Nishida, Y., Nakasu, E.: A method of estimating coding PSNR using quantized DCT coefficients. IEEE Trans. Circuits Syst. Video Technol. 16(2), 251–259 (2006)

    Article  Google Scholar 

  21. Joint Video Team: Reference Software JM 18.2. Available at http://iphome.hhi.de/suehring/tml

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, Y., Wang, P., Xiang, W. et al. A novel rate control algorithm for video coding based on fuzzy-PID controller. SIViP 9, 875–884 (2015). https://doi.org/10.1007/s11760-013-0518-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0518-2

Keywords

Navigation