Skip to main content
Log in

A constrained egalitarian solution for convex multi-choice games

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

This paper deals with a constrained egalitarian solution for convex multi-choice games named the d value. It is proved that the d value of a convex multi-choice game belongs to the precore, Lorenz dominates each other element of the precore and possesses a population monotonicity property regarding players’ participation levels. Furthermore, an axiomatic characterization is given where a specific consistency property plays an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The d value first appeared in (Branzei et al. 2007, 2008) under the name the constrained egalitarian solution for convex multi-choice games.

  2. With an abuse of notation we write φ ij (Nmv) instead of φ ij (〈Nmv〉).

References

  • Branzei R, Dimitrov D, Tijs S (2008) Models in Cooperative Game Theory. Springer, Berlin

    Google Scholar 

  • Branzei R, Llorca N, Sánchez-Soriano J, Tijs S (2007) Egalitarianism in multi-choice games. CentER DP 2007-54, Tilburg University, The Netherlands

    Google Scholar 

  • Branzei R, Llorca N, Sánchez-Soriano J, Tijs S (2009a) Multichoice total clan games. TOP 17:123–138

    Article  Google Scholar 

  • Branzei R, Tijs S, Zarzuelo J (2009b) Convex multi-choice cooperative games: characterizations and monotonic allocation schemes. Eur J Oper Res 198:571–575

    Article  Google Scholar 

  • Davis M, Maschler M (1965) The kernel of a cooperative game. Nav Res Logist Q 12:223–259

    Article  Google Scholar 

  • Derks J, Peters H (1993) A Shapley value for games with restricted coalitions. Int J Game Theory 21:351–360

    Article  Google Scholar 

  • Dutta B, Ray D (1989) A concept of egalitarianism under participation constraints. Econometrica 57:615–635

    Article  Google Scholar 

  • Dutta B, Ray D (1991) Constrained egalitarian allocations. Games Econ Behav 3:403–422

    Article  Google Scholar 

  • Gillies DB (1953) Some theorems on n-person games, Ph. D. Thesis, Princeton University Press, Princeton, New Jersey

  • Grabisch M, Lange F (2007) Games on lattices, multichoice games and the Shapley value: a new approach. Math Methods Oper Res 65:153–167

    Article  Google Scholar 

  • Grabisch M, Xie L (2007) A new investigation about the core and Weber set of multichoice games. Math Methods Oper Res 66:491–512

    Article  Google Scholar 

  • Hart S, Mas-Colell A (1989) Potential, value and consistency. Econometrica 57:589–614

    Article  Google Scholar 

  • Hsiao C-R, Raghavan TES (1993a) Monotonicity and dummy free property for multi-choice cooperative games. Int J Game Theory 21:301–312

    Article  Google Scholar 

  • Hsiao C-R, Raghavan TES (1993b) Shapley value for multi-choice cooperative games (I). Games and Econ Behav 5:240–256

    Article  Google Scholar 

  • Hwang Y, Liao Y (2010) The unit-level-core for multi-choice games: the replicated core for TU games. J Glob Optim 47:161–171

    Article  Google Scholar 

  • Hwang Y, Liao Y (2011) The multi-core, balancedness and axiomatizations for multi-choice games. Int J Game Theory 40:677–689

    Article  Google Scholar 

  • Klijn F, Slikker M, Zarzuelo J (2000) The egalitarian solution for convex games: some characterizations. Math Soc Sci 40:111–121

    Article  Google Scholar 

  • Nouweland van den A, Potters J, Tijs S, Zarzuelo J (1995) Cores and related solution concepts for multi-choice games. Math Methods Oper Res 41:289–311

    Article  Google Scholar 

  • Peters H, Zank H (2005) The egalitarian solution for multi-choice games. Ann Oper Res 137:399–409

    Article  Google Scholar 

  • Sánchez-Soriano J, Branzei R, Llorca N, Tijs S (2010) A technical note on Lorenz dominance in cooperative games. CentER DP 2010-101. Tilburg University, The Netherlands

    Google Scholar 

  • Shapley LS (1953) A value for n-person games. Ann Math Stud 28:307–317

    Google Scholar 

  • Sprumont Y (1990) Population monotonic allocation schemes for cooperative games with transferable utility. Games Econ Behav 2:378–394

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank two anonymous referees for their interesting comments and suggestions which have improved the quality of this paper. Financial support from the Government of Spain and FEDER under projects MTM2008-06778-C02-01 and MTM2011-23205 is gratefully acknowledged. This work has been partially supported by Fundación Séneca de la Región de Murcia through grant 08716/PI/08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sánchez-Soriano.

Appendix

Appendix

Proof of Lemma 5.1

By BMP

$$ \sum_{i\in {\rm car}(s^{\max })}\sum_{j\leq s_{i}^{\max }}\varphi _{ij}(N,m,v)\leq v(s^{\max }). $$

Suppose

$$ \sum_{i\in {\rm car}(s^{\max })}\sum_{j\leq s_{i}^{\max }}\varphi _{ij}(N,m,v)<v(s^{\max }). $$

Since φ satisfies LPM, we know that for all i ∈ car(s max) and \(j\leq s_{i}^{\max }, ij\in \arg \max \{\varphi _{kl}(N,m,v)\left| k\in N,l\in M_{k}\right. \}.\) On the other hand, since all such ij received the same payoff, we obtain

$$ \left|| s^{\max }\right|| \varphi _{ij}(N,m,v)<v(s^{\max })=\left|| s^{\max }\right|| \alpha (s^{\max },v). $$

Hence, we have

$$ \varphi _{ij}(N,m,v)<\alpha (s^{\max },v),\quad{\text{ for all }}i\in {\rm car}(s^{\max }) \hbox{ and }j\leq s_{i}^{\max }, $$

which is a direct contradiction with φ satisfying EDS. \(\square\)

Proof of Lemma 5.2

(i) Since φ satisfies EDS there exist i′ ∈ car(s 1) and j′ ≤ s 1 i with \(\varphi _{i^{\prime }j^{\prime }}(N,m,v)\geq \alpha (s^{1},v).\) From the proof of Lemma 5.1, we have that

$$ \alpha (s^{\max },v)=\varphi _{kl}(N,m,v)\geq \varphi _{i^{\prime }j^{\prime }}(N,m,v)\geq \alpha (s^{1},v), $$

for all \(kl\in \arg \max \{\varphi _{i^{\prime }j^{\prime }}(N,m,v)\}.\) Since α(s 1v) ≥ α(sv) for all s, we obtain α(s maxv) = α(s 1v).

(ii) Since s ≤ s max by (i) we have

$$ \begin{aligned} \sum_{i\in {\rm car}(s)}\sum_{j\leq s_{i}}\varphi _{ij}(N,m,v) =&\left|| s\right|| \alpha (s^{\max },v)=\left|| s\right|| \alpha (s^{1},v)\\ \geq &\left|| s\right|| \alpha (s,v)=v(s).\square \end{aligned} $$

Proof of Lemma 5.3

If t = 0, then \(v_{-s^{\max }}({\bf 0})=0=v(s^{\max })-v(s^{\max }).\)

If t = m − s max, by Lemma 5.1 and the definition of the reduced game, we can derive that

$$ \begin{aligned} v_{-s^{\max }}(m-s^{\max})\,=&\,v(m)-\sum_{i\in {\rm car}(s^{\max })}\sum_{j\leq s_{i}^{\max }}\varphi _{ij}(N,m,v)\\ =&\,v(m-s^{\max }+s^{\max })-v(s^{\max }). \end{aligned} $$

If \({\bf 0}<t<m-s^{\max },\) from Lemma 5.2 (ii) we have for each s ≤ s max

$$ v(s+t)-\sum_{i\in {\rm car}(s)}\sum_{j\leq s_{i}}\varphi _{ij}(N,m,v)\leq v(s+t)-v(s). $$

In particular, for s = s max, we obtain \(v_{-s^{\max }}(t)\leq v(s^{\max }+t)-v(s^{\max }).\) The reverse inequality follows in a similar way from BMP. Therefore, we conclude that the result holds. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branzei, R., Llorca, N., Sánchez-Soriano, J. et al. A constrained egalitarian solution for convex multi-choice games. TOP 22, 860–874 (2014). https://doi.org/10.1007/s11750-013-0302-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-013-0302-z

Keywords

Mathematics Subject Classification (2010)

Navigation