Improvement of the phase-transfer catalysis method for synthesis of glycidyl ether

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A convenient procedure for the synthesis of aliphatic alkylglycidyl ether has been studied. It has been found that the improved preparation of the alkylglycidyl ether can be achieved by using fatty alcohol such as octanol and octadecanol with epichlorohydrin in the presence of phase-transfer catalyst (PTC) such as 1-alkyloxypropan-2-ol-3-trimethyl ammonium methylsulfate, 1-alkyloxypropan-2-ol-3-methyldiethanolammonium methylsulfate, alkyloxy-2-hydroxypropyldimethylamine and alkyloxy-2-hydroxypropyldiethanolamine, tetrabutylammonium bromide, etc. without water and other organic solvents. This method, carried out in solid phase/organic phase (reactants and product themselves), has the following merits: (i) producing the solid by-products such as sodium chloride and sodium hydroxide which are easily removed by simple filtration, (ii) saving the amount of reactants used such as sodium chloride and phase-transfer catalyst, and (iii) increasing the yields of glycidyl ethers. The yields of octylglycidyl ether and octadecylglycidyl ether are 92.0 and 91.7%, respectively. The amount of sodium hydroxide used can be saved by from 1.5 to 0.7 molar ratio with respect to octanol in comparison with those in the conventional method using PTC.