, Volume 46, Issue 5, pp 399-407
Date: 06 Mar 2011

Oral Docosapentaenoic Acid (22:5n-3) Is Differentially Incorporated into Phospholipid Pools and Differentially Metabolized to Eicosapentaenoic Acid in Tissues from Young Rats

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The present study assessed the effect of oral supplementation with docosapentaenoic acid (DPA, 22:5n-3) on the levels of serum and tissue lipid classes and their fatty acid compositions including individual phospholipid types in rat liver, heart, and kidney. Sprague–Dawley rats received daily oral gavage over 10 days as corn oil without (controls) or with purified DPA in free fatty acid form (21.2 mg/day). The DPA group exhibited significantly lower serum lipid concentrations. The concentrations in μmol/100 g serum or μmol/g tissue of DPA in the total lipid (TL) were higher by 2.3-, 2.4-, 10.9-, and 5.1-fold in the DPA group of serum, liver, heart, and kidney, respectively, with the phospholipids (PL) being the major DPA reservoir (45.2–52.1% of the DPA in the TL). No significant differences in DHA (22:6n-3) amounts in TL appeared. The highest relative mol% values as DPA were in heart tissue (means of 11.1% in PL and 16.2% in phosphatidylinositol) and lowest in kidney. The EPA (20:5n-3) concentrations were markedly higher in the DPA group and most pronounced in the kidney (5.1 times higher in the TL as compared to controls) relative to liver and heart yielding an estimated apparent % conversion of DPA to EPA of 67% and EPA:DPA ratios reaching 5.74 in kidney phosphatidylethanolamine. The serum lipid-lowering potential of dietary DPA and its impact in the kidney with the derived EPA warrants investigation.