Skip to main content
Log in

Organ-Specific Distributions of Lysophosphatidylcholine and Triacylglycerol in Mouse Embryo

  • Original Article
  • Published:
Lipids

Abstract

Imaging mass spectrometry (IMS) has been developed as a method for determining and visualizing the distribution of proteins and lipids across sections of dissected tissue. Although lipids play an important role in mammal development, their detailed distributions have not been analyzed by conventional methods. In this study, we tried to determine and visualize lysophosphatidylcholine (LysoPtdCho) and triacylglycerol (TAG) in a mouse embryo by matrix-assisted laser desorption/ionization (MALDI) hybrid quadrupole time-of-flight (TOF) mass spectrometer. Many peaks were detected from a raster scan of the whole embryonic sections. The peaks at m/z 496.33, 524.36, 879.72, 881.74, and 921.74 were identified by MS/MS analyses as [LysoPtdCho (16:0) + H]+, [LysoPtdCho (18:0) + H]+, [TAG (16:0/18:2/18:1) + Na]+, [TAG (16:0/18:1/18:1) + Na]+, and [TAG (16:0/20:3/18:1) + K]+, respectively. The ion images constructed from the peaks revealed that LysoPtdCho were distributed throughout the body and TAGs were distributed around the brown adipose tissue and in the liver at embryo day 17.5. Thus, IMS system based on MALDI hybrid quadrupole TOF MS revealed the distribution of LysoPtdCho and, more importantly, the organ-specific distribution of TAGs in the embryonic stages of mammals for the first time. We can conclude that this technique enables us to analyze the roles of various lipids during embryogenesis and gives insight for lipid research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid

Da:

Dalton

DHA:

Docosahexaenoic acid

DHB:

2,5-Dihydroxybenzoic acid

H&E:

Hematoxylin and eosin

IMS:

Imaging mass spectrometry

ITO:

Indium-tin-oxide

LPA:

Lysophosphatidic acid

LysoPtdCho:

Lysophosphatidylcholine

LPLD:

Lysophospholipase D

MALDI:

Matrix-assisted laser desorption/ionization

MW:

Molecular weight

NL:

Neutral loss

OCT:

Optimal cutting temperature

PtdCho:

Phosphatidylcholine

PL:

Phospholipid

PLA2:

Phospholipase A2

PUFA:

Polyunsaturated fatty acid

SM:

Sphingomyelin

TAG:

Triacylglycerol

TFA:

Trifluoroacetic acid

TOF:

Time of flight

TRPV:

Transient receptor potential vanilloid

References

  1. Kiep L, Burkhardt J, Seifert K (2008) Drug metabolism studies with the incubated hen’s egg. Identification of 2,3,5-trihydroxybenzoic acid as a metabolite of gentisic acid. Arzneimittelforschung 58:469–474

    PubMed  CAS  Google Scholar 

  2. Ikegami K, Heier RL, Taruishi M, Takagi H, Mukai M, Shimma S, Taira S, Hatanaka K, Morone N, Yao I, Campbell PK, Yuasa S, Janke C, Macgregor GR, Setou M (2007) Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci USA 104:3213–3218

    Article  PubMed  CAS  Google Scholar 

  3. Yao I, Takagi H, Ageta H, Kahyo T, Sato S, Hatanaka K, Fukuda Y, Chiba T, Morone N, Yuasa S, Inokuchi K, Ohtsuka T, Macgregor GR, Tanaka K, Setou M (2007) Scrapper-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell 130:943–957

    Article  PubMed  CAS  Google Scholar 

  4. Matsumoto M, Setou M, Inokuchi K (2007) Transcriptome analysis reveals the population of dendritic RNAs and their redistribution by neural activity. Neurosci Res 57:411–423

    Article  PubMed  CAS  Google Scholar 

  5. Gobert GN, Jones MK (2008) Discovering new schistosome drug targets: the role of transcriptomics. Curr Drug Targets 9:922–930

    Article  PubMed  CAS  Google Scholar 

  6. Setou M, Nakagawa T, Seog DH, Hirokawa N (2000) Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288:1796–1802

    Article  PubMed  CAS  Google Scholar 

  7. Ahnfelt-Ronne J, Jorgensen MC, Hald J, Madsen OD, Serup P, Hecksher-Sorensen J (2007) An improved method for three-dimensional reconstruction of protein expression patterns in intact mouse and chicken embryos and organs. J Histochem Cytochem 55:925–930

    Article  PubMed  Google Scholar 

  8. Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, Kawagishi M, Hirokawa N (2002) Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417:83–87

    Article  PubMed  CAS  Google Scholar 

  9. Popova E, Rentzsch B, Bader M, Krivokharchenko A (2008) Generation and characterization of a GFP transgenic rat line for embryological research. Transgenic Res 17:955–963

    Article  PubMed  CAS  Google Scholar 

  10. Kitamura Y, Okazaki T, Nagatsuka Y, Hirabayashi Y, Kato S, Hayashi K (2007) Immunohistochemical distribution of phosphatidylglucoside using anti-phosphatidylglucoside monoclonal antibody (DIM21). Biochem Biophys Res Commun 362:252–255

    Article  PubMed  CAS  Google Scholar 

  11. Shimma S, Sugiura Y, Hayasaka T, Zaima N, Matsumoto M, Setou M (2008) Mass imaging and identification of biomolecules with MALDI-QIT-TOF-based system. Anal Chem 80:878–885

    Article  PubMed  CAS  Google Scholar 

  12. Hayasaka T, Goto-Inoue N, Sugiura Y, Zaima N, Nakanishi H, Ohishi K, Nakanishi S, Naito T, Taguchi R, Setou M (2008) Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. Rapid Commun Mass Spectrom 22:3415–3426

    Article  PubMed  CAS  Google Scholar 

  13. Woods AS, Jackson SN (2006) Brain tissue lipidomics: direct probing using matrix-assisted laser desorption/ionization mass spectrometry. AAPS J 8:E391–395

    PubMed  Google Scholar 

  14. Groseclose MR, Andersson M, Hardesty WM, Caprioli RM (2007) Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J Mass Spectrom 42:254–262

    Article  PubMed  CAS  Google Scholar 

  15. Goto-Inoue N, Hayasaka T, Sugiura Y, Taki T, Li YT, Matsumoto M, Setou M (2008) High-sensitivity analysis of glycosphingolipids by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight imaging mass spectrometry on transfer membranes. J Chromatogr B Analyt Technol Biomed Life Sci 870:74–83

    Article  PubMed  CAS  Google Scholar 

  16. Sugiura Y, Shimma S, Konishi Y, Yamada MK, Setou M (2008) Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS One 3:e3232

    Article  PubMed  Google Scholar 

  17. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  18. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10, 000 daltons. Anal Chem 60:2299–2301

    Article  PubMed  CAS  Google Scholar 

  19. Hillenkamp F, Karas M, Beavis RC, Chait BT (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63:1193A–1203A

    Article  PubMed  CAS  Google Scholar 

  20. Kaufmann R, Spengler B, Lutzenkirchen F (1993) Mass spectrometric sequencing of linear peptides by product-ion analysis in a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization. Rapid Commun Mass Spectrom 7:902–910

    Article  PubMed  CAS  Google Scholar 

  21. Touboul D, Brunelle A, Halgand F, De La Porte S, Laprevote O (2005) Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy. J Lipid Res 46:1388–1395

    Article  PubMed  CAS  Google Scholar 

  22. Northen TR, Yanes O, Northen MT, Marrinucci D, Uritboonthai W, Apon J, Golledge SL, Nordstrom A, Siuzdak G (2007) Clathrate nanostructures for mass spectrometry. Nature 449:1033–1036

    Article  PubMed  CAS  Google Scholar 

  23. Chaurand P, Latham JC, Lane KB, Mobley JA, Polosukhin VV, Wirth PS, Nanney LB, Caprioli RM (2008) Imaging mass spectrometry of intact proteins from alcohol-preserved tissue specimens: bypassing formalin fixation. J Proteome Res 7:3543–3555

    Article  PubMed  CAS  Google Scholar 

  24. Seeley EH, Oppenheimer SR, Mi D, Chaurand P, Caprioli RM (2008) Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spectrom 19:1069–1077

    Article  PubMed  CAS  Google Scholar 

  25. Broersen A, van Liere R, Altelaar AF, Heeren RM, McDonnell LA (2008) Automated, feature-based image alignment for high-resolution imaging mass spectrometry of large biological samples. J Am Soc Mass Spectrom 19:823–832

    Article  PubMed  CAS  Google Scholar 

  26. Baluya DL, Garrett TJ, Yost RA (2007) Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. Anal Chem 79:6862–6867

    Article  PubMed  CAS  Google Scholar 

  27. Wiseman JM, Ifa DR, Zhu Y, Kissinger CB, Manicke NE, Kissinger PT, Cooks RG (2008) Special feature: desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Natl Acad Sci USA 105:18120–18125

    Article  PubMed  Google Scholar 

  28. Burnum KE, Tranguch S, Mi D, Daikoku T, Dey SK, Caprioli RM (2008) Imaging mass spectrometry reveals unique protein profiles during embryo implantation. Endocrinology 149:3274–3278

    Article  PubMed  CAS  Google Scholar 

  29. Shimma S, Furuta M, Ichimura K, Yoshida Y, Setou M (2006) A novel approach to in situ proteome analysis using a chemical inkjet printing technology and MALDI-QIT-TOF tandem mass spectrometer. Surf Int Anal 38:1712–1714

    Article  CAS  Google Scholar 

  30. Sugiura Y, Shimma S, Setou M (2006) Thin sectioning improves the peak intensity and signal-to-noise ratio in direct tissue mass spectrometry. J Mass Spectrom Soc Jpn 54:45–48

    CAS  Google Scholar 

  31. Sugiura Y, Shimma S, Setou M (2006) Two-step matrix application technique to improve ionization efficiency for matrix-assisted laser desorption/ionization in imaging mass spectrometry. Anal Chem 78:8227–8235

    Article  PubMed  CAS  Google Scholar 

  32. Taira S, Sugiura Y, Moritake S, Shimma S, Ichiyanagi Y, Setou M (2008) Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem 80:4761–4766

    Article  PubMed  CAS  Google Scholar 

  33. Hosokawa N, Sugiura Y, Setou M (2008) Spectrum normalization method with external standard in mass spectrometric imaging (MSI). J Mass Spectrom Soc Jpn 56:77–81

    CAS  Google Scholar 

  34. Norris JL, Cornett DS, Mobley JA, Andersson M, Seeley EH, Chaurand P, Caprioli RM (2007) Processing MALDI mass spectra to improve mass spectral direct tissue analysis. Int J Mass Spectrom 260:212–221

    Article  PubMed  CAS  Google Scholar 

  35. Setou M, Hayasaka T, Shimma S, Sugiura Y, Matsumoto M (2008) Protein denaturation improves enzymatic digestion efficiency for direct tissue analysis using mass spectrometry. Surf Int Anal 255:1555–1559

    CAS  Google Scholar 

  36. Shimma S, Sugiura Y, Hayasaka T, Hoshikawa Y, Noda T, Setou M (2007) MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis. J Chromatogr B Analyt Technol Biomed Life Sci 855:98–103

    Article  PubMed  CAS  Google Scholar 

  37. Shimma S, Setou M (2007) Mass microscopy to reveal distint localization of heme B (m/z 616) in colon cancer liver metastasis. J Mass Spectrom Soc Jpn 55:145–148

    CAS  Google Scholar 

  38. Chaurand P, Cornett DS, Caprioli RM (2006) Molecular imaging of thin mammalian tissue sections by mass spectrometry. Curr Opin Biotechnol 17:431–436

    Article  PubMed  CAS  Google Scholar 

  39. Yao I, Sugiura Y, Matsumoto M, Setou M (2008) In situ proteomics with imaging mass spectrometry and principal component analyses in the Scrapper-Knockout mouse brain. Proteomics 8:3692–3701

    Article  PubMed  CAS  Google Scholar 

  40. Khatib-Shahidi S, Andersson M, Herman JL, Gillespie TA, Caprioli RM (2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78:6448–6456

    Article  PubMed  CAS  Google Scholar 

  41. Novak EM, Dyer RA, Innis SM (2008) High dietary omega-6 fatty acids contribute to reduced docosahexaenoic acid in the developing brain and inhibit secondary neurite growth. Brain Res 1237:136–145

    Article  PubMed  CAS  Google Scholar 

  42. Rousseau D, Helies-Toussaint C, Raederstorff D, Moreau D, Grynberg A (2001) Dietary n-3 polyunsaturated fatty acids affect the development of renovascular hypertension in rats. Mol Cell Biochem 225:109–119

    Article  PubMed  CAS  Google Scholar 

  43. Farkas K, Ratchford IA, Noble RC, Speake BK (1996) Changes in the size and docosahexaenoic acid content of adipocytes during chick embryo development. Lipids 31:313–321

    Article  PubMed  CAS  Google Scholar 

  44. Innis SM, Friesen RW (2008) Essential n-3 fatty acids in pregnant women and early visual acuity maturation in term infants. Am J Clin Nutr 87:548–557

    PubMed  CAS  Google Scholar 

  45. Alessandri JM, Goustard B, Guesnet P, Durand G (1998) Docosahexaenoic acid concentrations in retinal phospholipids of piglets fed an infant formula enriched with long-chain polyunsaturated fatty acids: effects of egg phospholipids and fish oils with different ratios of eicosapentaenoic acid to docosahexaenoic acid. Am J Clin Nutr 67:377–385

    PubMed  CAS  Google Scholar 

  46. Kahn-Kirby AH, Dantzker JL, Apicella AJ, Schafer WR, Browse J, Bargmann CI, Watts JL (2004) Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 119:889–900

    Article  PubMed  CAS  Google Scholar 

  47. Choy PC, Tran K, Hatch GM, Kroeger EA (1997) Phospholipid metabolism in the mammalian heart. Prog Lipid Res 36:85–101

    Article  PubMed  CAS  Google Scholar 

  48. Kinnaird AA, Choy PC, Man RY (1988) Lysophosphatidylcholine accumulation in the ischemic canine heart. Lipids 23:32–35

    Article  PubMed  CAS  Google Scholar 

  49. Hirano K, Ikeda Y, Zaima N, Sakata Y, Matsumiya G (2008) Triglyceride deposit cardiomyovasculopathy. N Engl J Med 359:2396–2398

    Article  PubMed  CAS  Google Scholar 

  50. Hsu FF, Turk J (2003) Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: the fragmentation processes. J Am Soc Mass Spectrom 14:352–363

    Article  PubMed  CAS  Google Scholar 

  51. Amate L, Ramirez M, Gil A (1999) Positional analysis of triglycerides and phospholipids rich in long-chain polyunsaturated fatty acids. Lipids 34:865–871

    Article  PubMed  CAS  Google Scholar 

  52. Yang LY, Kuksis A, Myher JJ, Steiner G (1995) Origin of triacylglycerol moiety of plasma very low density lipoproteins in the rat: structural studies. J Lipid Res 36:125–136

    PubMed  CAS  Google Scholar 

  53. Al-Saad KA, Zabrouskov V, Siems WF, Knowles NR, Hannan RM, Hill HH Jr (2003) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of lipids: ionization and prompt fragmentation patterns. Rapid Commun Mass Spectrom 17:87–96

    Article  PubMed  CAS  Google Scholar 

  54. Hsu FF, Turk J (1999) Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10:587–599

    Article  PubMed  CAS  Google Scholar 

  55. Allenmark S, Sjodahl E, Sjodahl R, Tagesson C (1980) Purification of an enzyme with lysophospholipase activity from rat intestinal mucosa by hydrophobic chromatography. Prep Biochem 10:463–471

    Article  PubMed  CAS  Google Scholar 

  56. Burdge GC, Slater-Jefferies JL, Grant RA, Chung WS, West AL, Lillycrop KA, Hanson MA, Calder PC (2008) Sex, but not maternal protein or folic acid intake, determines the fatty acid composition of hepatic phospholipids, but not of triacylglycerol, in adult rats. Prostaglandins Leukot Essent Fatty Acids 78:73–79

    Article  PubMed  CAS  Google Scholar 

  57. Chirala SS, Chang H, Matzuk M, Abu-Elheiga L, Mao J, Mahon K, Finegold M, Wakil SJ (2003) Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc Natl Acad Sci USA 100:6358–6363

    Article  PubMed  CAS  Google Scholar 

  58. Murphy RC, Hankin JA, Barkley RM (2008) Imaging of lipid species by MALDI mass spectrometry. J Lipid Res

  59. McAnoy AM, Wu CC, Murphy RC (2005) Direct qualitative analysis of triacylglycerols by electrospray mass spectrometry using a linear ion trap. J Am Soc Mass Spectrom 16:1498–1509

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Masako Suzuki (Hamamatsu University School of Medicine) for technical support with the operation of the QSTAR XL system. This work was supported by a Grant-in-Aid for SENTAN from the Japan Science and Technology Agency (to M.S.) and a Grant-in-Aid for Young Scientists B (to T.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsutoshi Setou.

About this article

Cite this article

Hayasaka, T., Goto-Inoue, N., Zaima, N. et al. Organ-Specific Distributions of Lysophosphatidylcholine and Triacylglycerol in Mouse Embryo. Lipids 44, 837–848 (2009). https://doi.org/10.1007/s11745-009-3331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3331-5

Keywords

Navigation