Skip to main content
Log in

From Aquatic to Terrestrial Food Webs: Decrease of the Docosahexaenoic Acid/Linoleic Acid Ratio

  • Communication
  • Published:
Lipids

Abstract

Fatty acid composition of the adipose tissue of six carnivorous mammalian species (European otter Lutra lutra, American mink Mustela vison, European Mink Mustela lutreola, European polecat Mustela putorius, stone marten Martes foina and European wild cat Felis silvestris) was studied. These species forage to differing degrees in aquatic and terrestrial food webs. Fatty acid analysis revealed significant differences in polyunsaturated fatty acid composition between species. More specifically, our results underline a gradual significant decrease in the docosahexaenoic acid (DHA)/linoleic acid (LNA) ratio of carnivore species as their dependence on aquatic food webs decreases. In conclusion, the use of the DHA/LNA ratio in long-term studies is proposed as a potential proxy of changes in foraging behaviour of semi-aquatic mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ARA:

Arachidonic acid

ALA:

α-Linolenic acid

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

LNA:

Linoleic acid

MUFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

SAFA:

Saturated fatty acid

TFAW:

Total fatty acid weight

References

  1. Bonesi L, Chanin P, Macdonald DW (2004) Competition between Eurasian otter Lutra lutra and American mink Mustela vison probed by niche shift. Oikos 106:19–26

    Article  Google Scholar 

  2. Bonesi L, Macdonald DW (2004) Differential habitat use promotes sustainable coexistence between the specialist otter and the generalist mink. Oikos 106:509–519

    Article  Google Scholar 

  3. Kruuk H (2002) Hunters and hunted, relationships between carnivores and people. Cambridge University Press, Cambridge

    Google Scholar 

  4. Iverson SJ, Field C, Don Bowen W, Blanchard W (2004) Quantitative fatty acids signature analysis: a new method of estimating predator diets. Ecol Monogr 74:211–235

    Article  Google Scholar 

  5. Rouvinen K, Kiiskinen T (1989) Influence of dietary fat source on the body fat composition of mink (Mustela vison) and blue fox (Alopex lagopus). Acta Agric Scand 39:279–288

    Article  CAS  Google Scholar 

  6. Wamberg S, Olesen CR, Hansen HO (1992) Influence of dietary sources of fat on lipid synthesis in mink (Mustela lutreola) mammary tissue. Comp Chem Physiol A 103:199–204

    CAS  Google Scholar 

  7. Colby RH, Mattacks CA, Pond CM (1993) The gross anatomy, cellular structure, and fatty acid composition of adipose tissue in captive polar bears (Ursus maritimus). Zoo Biol 12:267–275

    Article  CAS  Google Scholar 

  8. Napolitano GE (1998) Fatty acids as trophic and chemical markers in freshwater ecosystems. In: Arts MT, Wainman BC (eds) Lipids in freshwater ecosystems, pp 21–44

  9. Ahlgren G, Gustavsson IB, Boberg M (1992) Fatty acid content and chemical composition of freshwater algae. J Phycol 28:37–50

    Article  CAS  Google Scholar 

  10. Desvilettes C, Bourdier G, Breton JC (1997) Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoan and microalgae. Freshw Biol 38:629–637

    Article  CAS  Google Scholar 

  11. Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F (1998) Microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–1179

    Article  CAS  Google Scholar 

  12. Malainey ME, Przybylski RS, Sherriff BL (1999) Fatty acid composition of native food plants and animals of Western Canada. J Archaeol Sci 26:83–94

    Article  Google Scholar 

  13. Arts MT (1998) Lipids in freshwater zooplankton: selected ecological and physiological aspects. In: Arts MT, Wainman BC (eds) Lipids in freshwater ecosystems, pp 71–86

  14. Sargent JR, Bell JG, Bell MV, Henderson RJ, Tocher DR (1993) The metabolism of phospholipids and polyunsaturated fatty acids in fish. Aquaculture: fundamental and applied research. In: Lahlou B, Vitiello P (eds) Coastal and estuarine studies, vol 43. American Geophysical Union, Washington DC, pp 103–124

  15. Brett MT, Müller-Navarra DC (1997) The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw Biol 38:483–499

    Article  CAS  Google Scholar 

  16. Arts MT, Ackman RG, Holub BG (2001) “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can J Fish Aquat Sci 58:122–137

    Article  CAS  Google Scholar 

  17. Henderson RJ, Tocher DR (1987) The lipid composition and biochemistry of freshwater fish. Prog Lipid Res 26:28–347

    Google Scholar 

  18. Olsen Y (1998) Lipids and essential fatty acids in aquatic food webs: what can freshwater ecologists learn from mariculture? In: Arts MT, Wainman BC (eds) Lipids in freshwater ecosystems, pp 161–202

  19. Ahlgren G, Blomqvist P, Boberg M, Gustavsson IB (1994) Fatty acid content of the dorsal muscle—an indicator of fat quality in freshwater fish. J Fish Biol 45:131–157

    CAS  Google Scholar 

  20. Skjervold H (1992) Lifestyle diseases and the human diet. How should the new discoveries influence the food production? Collection of articles printed in The Journal of Dairy Industry of Norway. Ås-Trykk, Norway, p 48

    Google Scholar 

  21. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  22. Grahl-Nielsen O, Halvorsen A-K, Bodoev N, Averina L, Radnaeva L, Pronin N, Käkelä R, Petrov E (2005) Fatty acid composition of blubber of the Baikal seal Phoca sibirica and its marine relative, the ringed seal P. hispida. Mar Ecol Prog Ser 305:261–274

    Article  CAS  Google Scholar 

  23. Käkelä R, Hyvärinen H (1998) Composition of polyunsaturated fatty acids in the liver of freshwater and marine ringed seals (Phoca hispida ssp.) differs largely due to the diet of seals. Comp Biochem Physiol B 120:231–237

    Article  PubMed  Google Scholar 

  24. Mustonen AM, Nieminen P (2006) Fatty acid composition in the central and peripheral adipose tissues of the sable (Martes zibellina). J Therm Biol 31:617–625

    Article  CAS  Google Scholar 

  25. Käkelä R, Ackman RG, Hyvärinen H (1995) Very long chain polyunsaturated fatty acids in the blubber of ringed seals (Phoca hispida sp.) from Saimaa, Lake Ladoga, the Baltic Sea and Spit-bergen. Lipids 30:725–731

    Article  PubMed  Google Scholar 

  26. Smith RJ, Hobson KA, Koopman HN, Lavigne DM (1996) Distinguishing between populations of fresh- and salt-water harbour seals (Phoca vitulina) using stable-isotopes ratios and fatty acid profiles. Can J Fish Aquat Sci 53:272–279

    Article  Google Scholar 

  27. Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Rev Entomol 41:115–139

    Article  PubMed  CAS  Google Scholar 

  28. Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–243

    Article  PubMed  CAS  Google Scholar 

  29. Bec A, Desvilettes C, Véra A, Lemarchand C, Fontvielle D, Boudier G (2003) Nutritional quality of a freshwater heterotrophic flagellate: trophic upgrading of its microalgal diet for Daphnia hyalina. Aquat Microb Ecol 32:203–207

    Article  Google Scholar 

  30. Müller-Navarra DC, Brett MT, Park S, Chandra S, Ballantyne AP, Zorita E, Goldman CR (2004) Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427:69–71

    Article  PubMed  CAS  Google Scholar 

  31. Bec A, Martin-Creuzburg D, von Elert E (2006) Trophic upgrading of autotrophic picoplankton by the heterotrophic nonaflagellate Paraphysomonas sp. Limnol Oceanogr 51:1699–1707

    Article  Google Scholar 

  32. Ben-David M, Flynn FW, Schell DM (1997) Annual and Seasonal changes in diets of martens: evidence from stable isotope analysis. Oecologia 111:280–291

    Article  Google Scholar 

  33. Samuel AM, Worthy GAJ (2004) Variability in fatty acid composition of bottlenose dolphin (Tursiops truncatus) blubber as a function of body site, season, and reproductive state. Can J Zool 82:1933–1942

    Article  CAS  Google Scholar 

  34. Clode D, Macdonald DW (1995) Evidence for food competition between mink (Mustela vison) and otter (Lutra lutra) on Scottish islands. J Zool 237:435–444

    Article  Google Scholar 

  35. Goszczynski J (1976) Composition of the food of martens. Acta Theriol 21:527–534

    Google Scholar 

  36. Libois R, Waechter A (1991) La fouine (Martes foina). In: Artois M, Delattre P (eds) Encyclopédie des Carnivores de France. Société Française d’Etude et de Protection des Mammifères, Nort/Erdre, n°10

  37. Libois R, Fellous A, Rosoux R, Fournier P, Siberchicot O (1998) The diet of the European Mink, Mustela lutreola, in south-western France: preliminary results. In: Reg S (ed) Euro-Americano mammal congress. Santiago de Compostela, 19–24th July 1998

  38. Sidorovich V, Kruuk H, Macdonald DW, Maran T (1998) Diets of semi-aquatic carnivores in northern Belarus, with implications for population changes. Symp Zool Soc Lond 71:177–190

    Google Scholar 

  39. Clavero M, Prenda J, Delibes M (2003) Trophic diversity of the otter (Lutra lutra L.) in temperate and Mediterranean freshwater habitats. J Biogeogr 30:761–769

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos-Manuel Koussoroplis.

About this article

Cite this article

Koussoroplis, AM., Lemarchand, C., Bec, A. et al. From Aquatic to Terrestrial Food Webs: Decrease of the Docosahexaenoic Acid/Linoleic Acid Ratio. Lipids 43, 461–466 (2008). https://doi.org/10.1007/s11745-008-3166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3166-5

Keywords

Navigation