Skip to main content
Log in

Characterization of Cationic Polyelectrolytes Adsorption to an Anionic Emulsion via Zeta-Potential and Microcalorimetry

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The adsorption of cationic polyelectrolytes (PEs) onto anionic silicone emulsion droplets, suspended in a sodium chloride solution is studied via electrophoretic mobility measurements and isothermal titration calorimetry. These model systems are studied to better understand the interactions governing PE adsorption-induced emulsion flocculation, which is relevant to many industrial applications. Electrophoretic mobility measurements provide critical information for rationalizing the effect of the PE charge density on the loss of stability of silicone emulsions. The interaction strength is calculated from a Langmuir adsorption isotherm determined by a ζ-potential titration measurement. Microcalorimetry measurements independently validate the adsorption free energy. Emulsion flocculation and coacervation are observed in the visual phase behavior as well as the ζ-potential titration measurements. The effect of PE charge density shows that PE-surfactant coacervation is the driving force in these PE-emulsion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

Radius of the emulsion droplet

e :

Elementary charge

k 1 :

Group parameter \(\equiv zeN_{1} k_{2} \;\)

k 2 :

Group parameter \(\equiv \exp ( - \Updelta \overline{G}_{\text{ads}} /N_{\text{A}} k_{\text{B}} T)/55.6 \times 1,000\;({\text{m}}^{3} /{\text{mol}})\)

k B :

Boltzmann constant (\(k_{\text{B}} = 1.381 \times 10^{ - 23} {\text{J/K}}\))

q(t):

ITC differential power input

x :

Mole fraction of PE in equivalence of the cationic charge

z :

Charge valence

C :

Molar concentration of PE in equivalence of the cationic charge

C inj :

Molar concentration of PE in equivalence of the cationic charge in ITC syringe

C j :

Molar concentration of PE in equivalence of the cationic charge at the jth injection

\(\Updelta \overline{H}_{\text{ads}}\) :

Molar adsorption enthalpy

\(\Updelta \overline{G}_{\text{ads}}\) :

Molar adsorption free energy

K :

Group constant \(\equiv \varepsilon (1 + \kappa a)/4\pi a\;({\text{C/V}} \cdot {\text{m}})\)

K ads :

Langmuir adsorption constant

N 1 :

Available charge sites for adsorption per m2

N A :

Avogadro’s constant (\(N_{\text{A}} = 6.023 \times 10^{23} / {\text{mol}}\))

Q j :

jth molar enthalpy per injection

Q cum,j :

jth cumulative molar enthalpy

\(\Updelta \overline{S}_{\text{ads}}\) :

Molar adsorption entropy

T :

Absolute temperature in Kelvin (K)

ΔV :

Volume of PE solution per injection

V j :

Volume of solution in ITC cell at the jth injection

σ :

Surface charge density of a spherical colloid

ζ :

ζ-potential

\(\varepsilon\) :

Dielectric constant of the medium (\(\varepsilon = \varepsilon_{\text{r}} \varepsilon_{0} = 78.54 \times 8.85 \times 10^{ - 12} \;{\text{F/m}}\))

κ −1 :

Debye length

References

  1. Ogawa S, Decker EA, McClements DJ (2003) Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes. J Agric Food Chem 51:2806–2812

    Article  CAS  Google Scholar 

  2. Mun S, Decker EA, McClements DJ (2005) Influence of droplet characteristics on the formation of oil-in-water emulsions stabilized by surfactant-chitosan layers. Langmuir 21:6228–6234

    Article  CAS  Google Scholar 

  3. Rojas OJ, Ernstsson M, Neuman RD, Claesson PM (2002) Effect of polyelectrolyte charge density on the adsorption and desorption behavior on mica. Langmuir 18:1604–1612

    Article  CAS  Google Scholar 

  4. Rojas OJ, Ernstsson M, Neumann RD, Claesson PM (2000) X-ray photoelectron spectroscopy in the study of polyelectrolyte adsorption on mica and cellulose. J Phys Chem B 104:10032–10042

    Article  CAS  Google Scholar 

  5. Mohr A, Nylander T, Piculell L, Lindman B, Boyko V, Bartels FW, Liu YQ, Kurka-Siebert V (2012) Mixtures of cationic copolymers and oppositely charged surfactants: effect of polymer charge density and ionic strength on the adsorption behavior at the silica-aqueous interface. ACS Appl Mater Interfaces 4:1500–1511

    Article  CAS  Google Scholar 

  6. Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci 30:1049–1118

    Article  CAS  Google Scholar 

  7. Kosmella S, Kotz J, Shirahama K, Liu J (1998) Cooperative nature of complex formation in mixed polyelectrolyte-surfactant systems. J Phys Chem B 102:6459–6464

    Article  CAS  Google Scholar 

  8. Mylonas Y, Staikos G (2001) Study of the complexation of sodium dodecyl sulfate with cationically charged acrylamide and N-isopropylacrylamide based copolymers: the role of the polymer chain hydrophobicity and of its charge density. Langmuir 17:3586–3591

    Article  CAS  Google Scholar 

  9. Kim BS, Ishizawa M, Gong JP, Osada Y (1999) Molecular and supramolecular structures of complexes formed by polyelectrolyte-surfactant interactions: effects of charge density and compositions. J Polym Sci Part A Polym Chem 37:635–644

    Article  CAS  Google Scholar 

  10. Hansson P, Almgren M (1996) Interaction of C(n)TAB with sodium (carboxymethyl)cellulose: effect of polyion linear charge density on binding isotherms and surfactant aggregation number. J Phys Chem 100:9038–9046

    Article  CAS  Google Scholar 

  11. Moglianetti M, Webster JRP, Edmondson S, Armes SP, Titmuss S (2011) A neutron reflectivity study of surfactant self-assembly in weak polyelectrolyte brushes at the sapphire-water interface. Langmuir 27:4489–4496

    Article  CAS  Google Scholar 

  12. Svensson AV, Huang LG, Johnson ES, Nylander T, Piculell L (2009) Surface deposition and phase behavior of oppositely charged polyion/surfactant ion complexes. 1. Cationic guar versus cationic hydroxyethylcellulose in mixtures with anionic surfactants. ACS Appl Mater Interfaces 1:2431–2442

    Article  CAS  Google Scholar 

  13. Nambam JS, Philip J (2012) Competitive adsorption of polymer and surfactant at a liquid droplet interface and its effect on flocculation of emulsion. J Colloid Interface Sci 366:88–95

    Article  CAS  Google Scholar 

  14. Cho YH, McClements DJ (2007) In situ electroacoustic monitoring of polyelectrolyte adsorption onto protein-coated oil droplets. Langmuir 23:3932–3936

    Article  CAS  Google Scholar 

  15. Guzey D, McClements DJ (2006) Formation, stability and properties of multilayer emulsions for application in the food industry. Adv Colloid Interface Sci 128:227–248

    Article  Google Scholar 

  16. Campbell RA, Arteta MY, Angus-Smyth A, Nylander T, Varga I (2011) Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry. J Phys Chem B 115:15202–15213

    Article  CAS  Google Scholar 

  17. Clauzel M, Johnson ES, Nylander T, Panandiker RK, Sivik MR, Piculell L (2011) Surface deposition and phase behavior of oppositely charged polyion-surfactant ion complexes. Delivery of silicone oil emulsions to hydrophobic and hydrophilic surfaces. ACS Appl Mater Interfaces 3:2451–2462

    Article  CAS  Google Scholar 

  18. Nylander T, Samoshina Y, Lindman B (2006) Formation of polyelectrolyte-surfactant complexes on surfaces. Adv Colloid Interface 123:105–123

    Article  Google Scholar 

  19. Terada E, Samoshina Y, Nylander T, Lindman B (2004) Adsorption of cationic cellulose derivatives/anionic surfactant complexes onto solid surfaces. I. Silica surfaces. Langmuir 20:1753–1762

    Article  CAS  Google Scholar 

  20. Terada E, Samoshina Y, Nylander T, Lindman B (2004) Adsorption of cationic cellulose derivative/anionic surfactant complexes onto solid surfaces. II. Hydrophobized silica surfaces. Langmuir 20:6692–6701

    Article  CAS  Google Scholar 

  21. Linse P, Kallrot N (2010) Polymer adsorption from bulk solution onto planar surfaces: effect of polymer flexibility and surface attraction in good solvent. Macromolecules 43:2054–2068

    Article  CAS  Google Scholar 

  22. Kallrot N, Linse P (2010) Dynamics of competitive polymer adsorption onto planar surfaces in good solvent. J Phys Chem B 114:3741–3753

    Article  Google Scholar 

  23. Li D, Kelkar MS, Wagner NJ (2012) Phase behavior and molecular thermodynamics of coacervation in oppositely charged polyelectrolyte/surfactant system: cationic polymer JR 400 and anionic surfactant SDS mixture. Langmuir 28:10348–10362

    Article  CAS  Google Scholar 

  24. Kizilay E, Kayitmazer AB, Dubin PL (2011) Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Adv Colloid Interface Sci 167:24–37

    Article  CAS  Google Scholar 

  25. Berglund KD, Przybycien TM, Tilton RD (2003) Coadsorption of sodium dodecyl sulfate with hydrophobically modified nonionic cellulose polymers. 2. Role of surface selectivity in adsorption hysteresis. Langmuir 19:2714–2721

    Article  CAS  Google Scholar 

  26. Berglund KD, Truong MT, Przybycien TM, Tilton RD, Walker LM (2004) Rheology of transient networks containing hydrophobically modified cellulose, anionic surfactant and colloidal silica: role of selective adsorption. Rheol Acta 43:50–61

    Article  CAS  Google Scholar 

  27. Santos O, Johnson ES, Nylander T, Panandiker RK, Sivik MR, Piculell L (2010) Surface adsorption and phase separation of oppositely charged polyion-surfactant ion complexes: 3. Effects of polyion hydrophobicity. Langmuir 26:9357–9367

    Article  CAS  Google Scholar 

  28. Campbell RA, Angus-Smyth A, Arteta MY, Tonigold K, Nylander T, Varga I (2010) New perspective on the cliff edge peak in the surface tension of oppositely charged polyelectrolyte/surfactant mixtures. J Phys Chem Lett 1:3021–3026

    Article  CAS  Google Scholar 

  29. Samoshina Y, Nylander T, Shubin V, Bauer R, Eskilsson K (2005) Equilibrium aspects of polycation adsorption on silica surface: how the adsorbed layer responds to changes in bulk solution. Langmuir 21:5872–5881

    Article  CAS  Google Scholar 

  30. Barford W, Ball RC, Nex CMM (1986) A nonequilibrium configuration theory of polyelectrolyte adsorption. J Chem Soc Faraday Trans 1(82):3233–3244

    Article  Google Scholar 

  31. Stuart MAC, Hoogendam CW, de Keizer A (1997) Kinetics of polyelectrolyte adsorption. J Phys Condens Matter 9:7767–7783

    Article  CAS  Google Scholar 

  32. McClements DJ (2005) Theoretical analysis of factors affecting the formation and stability of multilayered colloidal dispersions. Langmuir 21:9777–9785

    Article  CAS  Google Scholar 

  33. Jonsson M, Linse P (2001) Polyelectrolyte-macroion complexation. I. Effect of linear charge density, chain length, and macroion charge. J Chem Phys 115:3406–3418

    Article  CAS  Google Scholar 

  34. Wallin T, Linse P (1996) Monte Carlo simulations of polyelectrolytes at charged micelles. 2. Effects of linear charge density. J Phys Chem 100:17873–17880

    Article  CAS  Google Scholar 

  35. Ottewill RH, Rastogi MC, Watanabe A (1960) The stability of hydrophobic sols in the presence of surface-active agents. 1. Theoretical treatment. Trans Faraday Soc 56:854–865

    Article  CAS  Google Scholar 

  36. Avranas A, Stalidis G (1991) Interfacial properties and stability of oil-in-water emulsions stabilized with binary-mixtures of surfactants. J Colloid Interface Sci 143:180–187

    Article  CAS  Google Scholar 

  37. Ruso JM, Deo N, Somasundaran P (2004) Complexation between dodecyl sulfate surfactant and zein protein in solution. Langmuir 20:8988–8991

    Article  CAS  Google Scholar 

  38. McFarlane NL, Wagner NJ, Kaler EW, Lynch ML (2010) Calorimetric study of the adsorption of poly(ethylene oxide) and poly(vinyl pyrrolidone) onto cationic nanoparticles. Langmuir 26:6262–6267

    Article  CAS  Google Scholar 

  39. Helgeson ME, Hodgdon TK, Kaler EW, Wagner NJ, Vethamuthu M, Ananthapadmanabhan KP (2010) Formation and rheology of viscoelastic “double networks” in wormlike micelle-nanoparticle mixtures. Langmuir 26:8049–8060

    Article  CAS  Google Scholar 

  40. Seng WP, Tam KC, Jenkins RD, Bassett DR (2000) Calorimetric studies of model hydrophobically modified alkali-soluble emulsion polymers with varying spacer chain length in ionic surfactant solutions. Macromolecules 33:1727–1733

    Article  CAS  Google Scholar 

  41. Akinchina A, Linse P (2003) Monte Carlo simulations of polyion-macroion complexes. 2. Polyion length and charge density dependence. J Phys Chem B 107:8011–8021

    Article  CAS  Google Scholar 

  42. Mateescu EM, Jeppesen C, Pincus P (1999) Overcharging of a spherical macroion by an oppositely charged polyelectrolyte. Europhys Lett 46:493–498

    Article  CAS  Google Scholar 

  43. Hansson P (2009) Phase behavior of aqueous polyion-surfactant ion complex salts: a theoretical analysis. J Colloid Interface Sci 332:183–193

    Article  CAS  Google Scholar 

  44. Israelachvili JN (1991) Intermolecular and surface forces, with applications to colloidal and biological systems (colloid science), 2nd edn. Academic Press, London

    Google Scholar 

  45. Stewart RJ, Weaver JC, Morse DE, Waite JH (2004) The tube cement of Phragmatopoma californica: a solid foam. J Exp Biol 207:4727–4734

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Procter and Gamble Corporation. The cryo-TEM experiments carried out by Yingchao Chen (Department of Material Science and Engineering, University of Delaware) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman J. Wagner.

Electronic supplementary material

Supporting Information Available: Supplementary information contains the derivation of the linearized Langmuir expression of the ζ-potential measurement and results from the auto-titration experiment. This material is available free of charge via the Internet. Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 447 kb)

About this article

Cite this article

Li, D., Schubert, B. & Wagner, N.J. Characterization of Cationic Polyelectrolytes Adsorption to an Anionic Emulsion via Zeta-Potential and Microcalorimetry. J Surfact Deterg 17, 655–667 (2014). https://doi.org/10.1007/s11743-013-1522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-013-1522-9

Keywords

Navigation