Skip to main content
Log in

Identification of genes differentially expressed in husk tomato (Physalis philadelphica) in response to whitefly (Trialeurodes vaporariorum) infestation

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Plants respond to phloem-feeding whiteflies by extensive changes in gene expression. To identify differentially expressed genes in husk tomato plants (Physalis philadelphica) infested with Trialeurodes vaporariorum, young plants were challenged with adult whiteflies, and forward and reverse subtractive libraries were constructed from infested leaves at 5 and 15 days after infestation. Several genes were identified as up-regulated; these included a diversity of genes involved in plant defense responses, protein synthesis or degradation, and cell wall fortification or modification. Genes required for amino acid biosynthesis, lipid metabolism and synthesis, including cell surface components such as suberin, responses to stress, photosynthesis and other functions, were similarly induced. Down-regulated genes were also identified, most prominently kinases and aquaporin genes. Similarities in defense responses between tomato and P. philadelphica were noted regarding the expression of certain genes in response to nematode, aphid, or whitefly. A role for abscisic acid, brassinosteroids, and cytokinins in the regulated response to whitefly infestation in P. philadelphica was also implied by the expression pattern of phytohormone-associated genes, including genes coding for proteins containing F-box motifs. Differential expression of selected genes was validated by quantitative real-time PCR. The possible role played by some of these genes during whitefly infestation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achuo EA, Prinsen E, Höfte M (2006) Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55:178–186

    Article  CAS  Google Scholar 

  • Ahn IP, Kim S, Lee YH (2005) Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol 138:1505–1515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Antony B, Palaniswami MS (2006) Bemisia tabaci induces pathogenesis-related proteins in cassava (Manihot esculenta Crantz). Indian J Biochem Biophys 43:182–185

    CAS  PubMed  Google Scholar 

  • Berlinger MJ (1986) Host plant resistance to Bemisia tabaci. Agric Ecosyst Environ 17:69–82

    Article  Google Scholar 

  • Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, DeLucia EH (2010) Biotic stress globally down-regulates photosynthesis genes. Plant Cell Environ 33:1597–1613

    Article  CAS  PubMed  Google Scholar 

  • Bock MA, Sanchez PJ, McKee LJ, Ortiz M (1995) Selected nutritional and quality analyses of tomatillo (Physalis ixocarpa). Plant Food Hum Nutr 48:127–133

    Article  CAS  Google Scholar 

  • Bolger ME (2014) De novo sequencing of the Physalis alkekengi genome. Plant and Animal Genome XXII Conference, P052. San Diego, CA, USA

  • Broin M, Cuiné S, Peltier G, Rey P (2000) Involvement of CDSP 32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. FEBS Lett 467:245–248

    Article  CAS  PubMed  Google Scholar 

  • Byrne DN, Miller WB (1990) Carbohydrate and amino acid composition of phloem sap and honeydew produced by Bemisia tabaci. J Insect Physiol 36:433–439

    Article  CAS  Google Scholar 

  • Calyecac-Cortero HG, Cibrián-Tovar J, Soto-Hernández M, García-Velasco R (2007) Isolation and identification of Physalis philadelphica LAM. volatiles. Agrociencia 41:337–346

    Google Scholar 

  • Chepyshko H, Lai CP, Huang LM, Liu JM, Shaw JF (2012) Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis. BMC Genom 13:309

    Article  CAS  Google Scholar 

  • Choi DS, Hong JK, Hwang BK (2013) Pepper osmotin-like protein 1 (CaOSM1) is an essential component for defense response, cell death, and oxidative burst in plants. Planta 238:1113–1124

    Article  CAS  Google Scholar 

  • Chou HH, Holmes MH (2001) DNA sequence quality trimming and vector removal. Bioinformatics 17:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Coemans B, Takahashi Y, Berberich T, Ito A, Kanzaki H, Matsumura H, Saitoh H, Tsuda S, Kamoun S, Sági L, Swennen R, Terauchi R (2008) High-throughput in planta expression screening identifies an ADP-ribosylation factor (ARF1) involved in non-host resistance and R gene-mediated resistance. Mol Plant Pathol 9:25–36

    CAS  PubMed  Google Scholar 

  • Da X, Yu K, Shen S, Zhang Y, Wu J, Yi H (2012) Identification of differentially expressed genes in a spontaneous altered leaf shape mutant of the navel orange [Citrus sinensis (L.) Osbeck]. Plant Physiol Biochem 56:97–103

    Article  CAS  PubMed  Google Scholar 

  • De la Torre-Almaráz R, Salazar-Segura M, Valverde RA (2003) Etiology of husk tomato (Physalis ixocarpa B.) Yellow Mottle in México. Agrociencia 37:277–289

    Google Scholar 

  • Dombrowski JE (2003) Salt stress activation of wound-related genes in tomato plants. Plant Physiol 132:2098–2107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doubnerová V, Jirasková A, Janošková M, Muller K, Baťková P, Synková H, Čeřovská N, Ryšlavá H (2007) The activity and isoforms of NADP-malic enzyme in Nicotiana benthamiana plants under biotic stress. Gen Physiol Biophys 26:281–289

    PubMed  Google Scholar 

  • Dubey NK, Goel R, Ranjan A, Idris A, Singh SK, Bag SK, Chandrashekar K, Pandey KD, Singh PK, Sawant SV (2013) Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly. BMC Genom 14:241

    Article  CAS  Google Scholar 

  • Earley K, Smith MR, Weber R, Gregory BD, Poethig RS (2010) An endogenous F-box protein regulates ARGONAUTE1 in Arabidopsis thaliana. Silence 1:15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Enciso-Rodríguez FE, González C, Rodríguez EA, López CE, Landsman D, Barrero LS, Mariño-Ramírez L (2013) Identification of immunity related genes to study the Physalis peruviana-Fusarium oxysporum pathosystem. PLoS One 8:e68500

    Article  PubMed Central  PubMed  Google Scholar 

  • Estrada-Hernández MG, Valenzuela-Soto JH, Ibarra-Laclette E, Délano-Frier JP (2009) Differential gene expression in whitefly Bemisia tabaci-infested tomato (Solanum lycopersicum) plants at progressing developmental stages of the insect’s life cycle. Physiol Plant 137:44–60

    Article  PubMed  Google Scholar 

  • Fischer G, Almanza-Merchán PJ, Miranda D (2014) Importancia y cultivo de la uchuva (Physalis peruviana L.). Rev Bras Frutic 36:1–15

    Article  Google Scholar 

  • Fridborg I, Grainger J, Page A, Coleman M, Findlay K, Angell S (2003) TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol Plant-Microbe Interact 16:132–140

    Article  CAS  PubMed  Google Scholar 

  • Garzón-Martínez GA, Zhu Z, Landsman D, Barrero LS, Mariño-Ramírez L (2012) The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction. BMC Genom 13:151

    Article  Google Scholar 

  • Gorovits R, Akad F, Beery H, Vidavsky F, Mahadav A, Czosnek H (2007) Expression of stress-response proteins upon whitefly-mediated inoculation of Tomato yellow leaf curl virus (TYLCV) in susceptible and resistant tomato plants. Mol Plant-Microbe Interact 20:1376–1383

    Article  CAS  PubMed  Google Scholar 

  • Goyer A (2010) Thiamine in plants: aspects of its metabolism and functions. Phytochemistry 71:1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Hamada AM, Jonsson LMV (2013) Thiamine treatments alleviate aphid infestations in barley and pea. Phytochemistry 94:135–141

    Article  CAS  PubMed  Google Scholar 

  • Heidel AJ, Baldwin IT (2004) Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of Nicotiana attenuata to attack by insects from multiple feeding guilds. Plant Cell Environ 27:1362–1373

    Article  CAS  Google Scholar 

  • Hong JK, Choi HW, Hwang IS, Hwang BK (2007) Role of a novel pathogen-induced pepper C3-H-C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance. Plant Mol Biol 63:571–588

    Article  CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Ann Rev Plant Biol 59:41–66

    Article  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom 9:118

    Article  Google Scholar 

  • Inbar M, Gerling D (2008) Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu Rev Entomol 53:431–448

    Article  CAS  PubMed  Google Scholar 

  • INEGI (2014) Balanza comercial de mercancías de México: anuario estadístico 2013: exportaciones dólares/Instituto Nacional de Estadística y Geografía. México

  • Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219

    Article  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kavitha PG, Thomas G (2008) Defence transcriptome profiling of Zingiber zerumbet (L.) Smith by mRNA differential display. J Biosci 33:81–90

    Article  CAS  PubMed  Google Scholar 

  • Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Ann Rev Plant Biol 53:299–328

    Article  CAS  Google Scholar 

  • Khajuria C, Wang H, Liu X, Wheeler S, Reese JC, El Bouhssini M, Whitworth RJ, Chen MS (2013) Mobilization of lipids and fortification of cell wall and cuticle are important in host defense against Hessian fly. BMC Genom 14:423

    Article  CAS  Google Scholar 

  • Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ (2013) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 4:1352

    Article  PubMed  Google Scholar 

  • Kirchhausen T (2000) Three ways to make a vesicle. Nat Rev Mol Cell Biol 1:187–198

    Article  CAS  PubMed  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  PubMed  Google Scholar 

  • Li P, Chen L, Zhou Y, Xia X, Shi K, Chen Z, Yu J (2013) Brassinosteroids-induced systemic stress tolerance was associated with increased transcripts of several defence-related genes in the phloem in Cucumis sativus. PLoS One 8:e66582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu H, Wang X, Zhang H, Yang Y, Ge X, Song F (2008) A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 15:57–65

    Article  CAS  Google Scholar 

  • Liu Y, Wang L, Xing X, Sun L, Pan J, Kong X, Zhang M, Li D (2013) ZmLEA3, a multifunctional group 3 LEA Protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54:944–959

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lü B, Sun W, Zhang S, Zhang C, Qian J, Wang X, Gao R, Dong H (2011) HrpNEa induced deterrent effect on phloem feeding of the green peach aphid Myzus persicae requires AtGSL5 and AtMYB44 genes in Arabidopsis thaliana. J Biosci 36:123–137

    Article  PubMed  Google Scholar 

  • Lytle BL, Song J, de la Cruz NB, Peterson FC, Johnson KA, Bingman CA, Phillips GN Jr, Volkman BF (2009) Structures of two Arabidopsis thaliana major latex proteins represent novel helix-grip folds. Proteins 76:237–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lytovchenko A, Schauer N, Willmitzer L, Fernie AR (2005) Tuber-specific cytosolic expression of a bacterial phosphoglucomutase in potato (Solanum tuberosum L.) dramatically alters carbon partitioning. Plant Cell Physiol 46:588–597

    Article  CAS  PubMed  Google Scholar 

  • Maldonado E, Pérez-Castorena AL, Garcés C, Martínez M (2011) Philadelphicalactones C and D and other cytotoxic compounds from Physalis philadelphica. Steroids 76:724–728

    Article  CAS  PubMed  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dang JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:303–410

    Google Scholar 

  • Maloney VJ, Samuels AL, Mansfield SD (2012) The endo-1,4-β-glucanase Korrigan exhibits functional conservation between gymnosperms and angiosperms and is required for proper cell wall formation in gymnosperms. New Phytol 193:1076–1087

    Article  CAS  PubMed  Google Scholar 

  • Mayer RT, Inbar M, McKenzie CL, Shatters R, Borowicz V, Albrecht U, Powell CA, Doostdar H (2002) Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Arch Insect Biochem Physiol 51:151–169

    Article  CAS  PubMed  Google Scholar 

  • Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  CAS  PubMed  Google Scholar 

  • Mondego JM, Duarte MP, Kiyota E, Martínez L, De Camargo SR, De Caroli FP, Alves BS, Guerreiro SM, Oliva ML, Guerreiro-Filho O, Menossi M (2011) Molecular characterization of a miraculin-like gene differentially expressed during coffee development and coffee leaf miner infestation. Planta 233:123–137

    Article  CAS  PubMed  Google Scholar 

  • Morales FJ (2003) The whitefly Trialeurodes vaporariorum as a potential constraint to the development of sustainable cropping systems in the mesothermic valleys of the Bolivian highlands. Technical report, Tropical Whitefly IPM Project

  • Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074–1085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreno JM, Martín R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41:451–463

    Article  CAS  PubMed  Google Scholar 

  • Muniz J, Kretzschmar AA, Rufato L, Pelizza TR, De Rossi Rufato A, de Macedo TA (2014) General aspects of Physalis cultivation. Cienc Rural 44:964–970

    Article  Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pageau K, Reisdorf-Cren M, Morot-Gaudry J-F, Masclaux-Daubresse C (2006) The two senescence-related markers, GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicotiana tabacum L. leaves. J Exp Bot 57:547–557

    Article  CAS  PubMed  Google Scholar 

  • Petzold J, Brownie C, Gould F (2009) Effect of Heliothis subflexa herbivory on fruit abscission by Physalis species: the roles of mechanical damage and chemical factors. Econ Entomol 34:603–613

    Article  Google Scholar 

  • Puthoff DP, Holzer FM, Perring TM, Walling LL (2010) Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding. J Chem Ecol 36:1271–1285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qubbaj T, Reineke A, Zebitz CPW (2005) Molecular interactions between rosy apple aphids, Dysaphis plantaginea, and resistant and susceptible cultivars of its primary host Malus domestica. Entomol Exp Appl 115:145–152

    Article  CAS  Google Scholar 

  • Ramos NE, Neto AF, Arsénio S, Mangerico E, Stigter L, Fortunato E, Fernandes JE, Lavadinho AMP, Louro D (2002) Situation of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum in protected tomato crops in Algarve (Portugal). EPPO Bull 32:11–15. doi:10.1046/j.1365-2338.2002.d01-25.x

    Article  Google Scholar 

  • Reca IB, Brutus A, Avino RD, Villard C, Bellincampi D (2008) Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum) and its use to purify a vacuolar invertase. Biochimie 90:1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Rojo E, Solano R, Sanchez-Serrano JJ (2003) Interactions between signaling compounds involved in plant defense. J Plant Growth Regul 22:82–98

    Article  CAS  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121

    Article  CAS  PubMed  Google Scholar 

  • Sakia RM (1992) The Box-Cox transformation technique: a review. Statistician 41:169–178

    Article  Google Scholar 

  • Saltzmann KD, Giovanini MP, Zheng C, Williams CE (2008) Virulent Hessian fly larvae manipulate the free amino acid content of host wheat plants. J Chem Ecol 34:1401–1410

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • SIAP (2013) Servicio de Información Agroalimentaria y Pesquera. Cierre de la producción agrícola por cultivo. Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, México

    Google Scholar 

  • Simbaqueba J, Sánchez P, Sanchez E, Núñez Zarantes VM, Chacon MI, Barrero LS, Mariño-Ramírez L (2011) Development and characterization of microsatellite markers for the Cape Gooseberry Physalis peruviana. PLoS One 6:e26719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh A, Singh IK, Verma PK (2008) Differential transcript accumulation in Cicer arietinum L. in response to a chewing insect Helicoverpa armigera and defence regulators correlate with reduced insect performance. J Exp Bot 59:2379–2392

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Boyko EV (2007) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol Exp Appl 122:1–16

    Article  CAS  Google Scholar 

  • Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exp Bot 57:755–766

    Article  CAS  PubMed  Google Scholar 

  • Vaghchhipawala ZE, Schlueter JA, Shoemaker RC, Mackenzie SA (2004) Soybean FGAM synthase promoters direct ectopic nematode feeding site activity. Genome 47:404–413

    Article  CAS  PubMed  Google Scholar 

  • van der Hoorn RAL, Jones JDG (2004) The plant proteolytic machinery and its role in defence. Curr Opin Plant Biol 7:400–407

    Article  PubMed  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 46:859–866

    Article  Google Scholar 

  • Wang L, Zhichao L, Chaoying H (2012) Transcriptome-wide mining of the differentially expressed transcripts for natural variation of floral organ size in Physalis philadelphica. J Exp Bot 63:6457–6465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L, He L, Li J, Zhao J, Li Z, He C (2014) Regulatory change at Physalis Organ Size 1 correlates to natural variation in tomatillo reproductive organ size. Nat Commun 5:4271

    CAS  PubMed  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320

    Article  PubMed Central  PubMed  Google Scholar 

  • Wei J, Hu X, Yang J, Yang W (2012) Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers. PLoS One 7:e5016

    Google Scholar 

  • Xu Y, Chang PFL, Liu D, Narashiman ML, Raghothama KG, Hasegawa PM, Bressan RA (1994) Plant defence genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077–1085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto RT (1964) Mass rearing of the tobacco hornworm II. Larval rearing and pupation. J Econ Entomol 62:1427–1431

    Article  Google Scholar 

  • Yang JW, Yi H-S, Kim H, Lee B, Lee S, Ghim S-Y, Ryu C-M (2011) Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below-ground microflora. J Ecol 99:46–56

    Article  CAS  Google Scholar 

  • Zamora-Tavares P, Vargas-Ponce O, Sanchez-Martínez J, Cabrera-Toledo D (2014) Diversity and genetic structure of the husk tomato (Physalis philadelphica Lam.) in Western Mexico. Genet Resour Crop Evol. doi:10.1007/s10722-014-0163-9

    Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid responses and represses effectual jasmonic responses in Arabidopsis. Plant Physiol 143:866–875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang P, Broekgaarden C, Zheng S, Snoeren TAL, van Loon JJA, Gols R, Dicke M (2013) Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. New Phytol 197:1291–1299

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Salzman K, Jian-Long B, Tong-Xian L (2005) Molecular strategies of plant defense and insect counter-defense. Insect Sci 12:3–15

    Article  CAS  Google Scholar 

  • Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146:852–858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank The Mexican Council for Science and Technology (CONACYT), for financial support (research project CB-83859 to CSH). MQC was also supported by a scholarship (No. 66080) granted by CONACYT. We are grateful to two anonymous reviewers for their highly constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Sánchez-Hernández.

Additional information

Communicated by E Kuzniak-Gebarowska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintana-Camargo, M., Méndez-Morán, L., Ramirez-Romero, R. et al. Identification of genes differentially expressed in husk tomato (Physalis philadelphica) in response to whitefly (Trialeurodes vaporariorum) infestation. Acta Physiol Plant 37, 29 (2015). https://doi.org/10.1007/s11738-015-1777-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1777-z

Keywords

Navigation