Skip to main content
Log in

The effect of endogenous hydrogen peroxide induced by cold treatment in the improvement of tissue regeneration efficiency

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

We propose that oxidative stress resulting from an imbalance between generation and scavenging hydrogen peroxide contributes to tissue regeneration efficiency during somatic embryogenesis of hexaploid winter wheat (Triticum aestivum cv. Kamila) and organogenesis of faba bean (Vicia faba ssp. minor cv. Nadwislanski). Endogenous hydrogen peroxide content and antioxidant capacity of cells were determined in initial explants and callus cultures derived from these explants. Regeneration-competent explants (immature embryos) contained more endogenous H2O2 than explants initiated from regeneration-recalcitrant tissue (mature wheat embryos and faba bean epicotyls). Higher H2O2 levels were observed despite the higher activity of antioxidative enzymes (superoxide dismutase and catalase) and the induction of their gene expression. Calli originating from immature embryos retained the capacity of the initial explants: high H2O2 production was observed during the whole culture period. Low temperature treatment (4°C) was found to be an effective factor, which improved both regeneration ability and H2O2 production. Exogenous application to the medium of H2O2 and catalase blocker (3-aminotriazole), but not FeEDTA and superoxide dismutase blocker (diethyldithiocarbamate), also resulted in the enhancement of regeneration efficiency. These results clearly indicate that plant regeneration is specifically regulated by endogenous H2O2 and by factors, which improve its accumulation. Moreover, a study of the activity of various SOD isoforms suggests that not only the absolute concentration of H2O2, but also its localisation might be responsible for controlling regeneration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAT:

Catalase [EC 1.11.1.6]

NR:

Regeneration-recalcitrant tissue

R:

Tissue potentially competent to regenerate, or regenerating tissue

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase [EC 1.15.1.1.]

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–125

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Benkirane H, Sabounji K, Chlyah A (2000) Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat. Plant Cell Tiss Org Cult 61:107–113

    Article  Google Scholar 

  • Benson EE, Roubelakis-Angelakis KA (1994) Oxidative stress in recalcitrant tissue cultures of grapevine. Free Rad Biol Med 16:355–362

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microprogram quantitaties of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chiappetta A, Michelotti V, Fambrini M, Bruno L, Salvini M, Petrarulo M, Azmi A, van Onckelen H, Pugliesi C, Bitonti M (2006) Zeatin accumulation and misexpression of a class I knox gene are intimately linked in the epiphyllous response of the interspecific hybrid EMB-2 (Helianthus annuus × H. tuberosus). Planta 223:917–931

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Cui K, Xing G, Liu X, Wang Y (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci 146:9–16

    Article  CAS  Google Scholar 

  • Cutler A, Saleem M, Wang H (1991) Cereal protoplast recalcitrance. In Vitro Cell Dev Biol 27:104–111

    Google Scholar 

  • Dąbrowska G, Kaczmarek K, Skrzypek E, Szechyńska-Hebda M (2007) cDNA cloning and expression gene encoding manganese superoxide dismutase of Vicia faba ssp. minor in regenerated and non-regenerated explants. Adv Agric Sci Probl Issues 523:83–92

    Google Scholar 

  • Daimon Y, Takabe K, Tasaka M (2003) The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol 44:113–121

    Article  PubMed  CAS  Google Scholar 

  • de Marco A, Roubelakis-Angelakis KA (1996a) Hydrogen peroxide plays a bivalent role in the regeneration of protoplasts. J Plant Physiol 149:109–114

    Article  Google Scholar 

  • de Marco A, Roubelakis-Angelakis KA (1996b) The complexity of enzymic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplasts. Plant Physiol 11:137–145

    Google Scholar 

  • Desikan R, Mackerness AHS, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Hancock JT, Neill SJ (2003) Oxidative stress signalling. In: Hirt K, Shinozaki K (eds) Plant responses to abiotic stress, topics in current genetics, vol 4. Springer, Berlin, pp 129–149

  • Dodeman VL, Ducreux G (1996) Total protein pattern expression during induction and development of carrot somatic embryos. Plant Sci 120:57–69

    Article  CAS  Google Scholar 

  • Dong JZ, Dunstan DI (2000) Molecular biology of somatic embryogenesis in conifers. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol. 1. Kluwer Academic Publishers, Dordrecht, pp 51–87

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Gara L, Pinto MC, Moliterni VMC, D’Egidio MG (2003) Redox regulation and storage processes during maturation in kernels of Triticum durum. J Exp Bot 54:249–258

    Article  PubMed  Google Scholar 

  • Geisler M, Kleczkowski LA, Karpinski S (2006) A universal algorithm for genome-wide in silico identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis. Plant J 45:384–398

    Article  PubMed  CAS  Google Scholar 

  • Gille L, Nohl H (2001) The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Arch Biochem Biophys 45:34–38

    Article  Google Scholar 

  • Gupta SD (2011) Role of free radicals and antioxidants in in vitro morphogenesis. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. Science Publishers, USA, pp 229–247

  • Hake S, Smith HMS, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of knox genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    Article  PubMed  CAS  Google Scholar 

  • Halperin W (1995) In vitro embryogenesis: some historical issues and unresolved problems. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 1–16

    Chapter  Google Scholar 

  • Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51:2053–2066

    Article  PubMed  CAS  Google Scholar 

  • Hjortswang HI, Larsson AS, Bharathan G, Bozhkov PV, von Arnold S, Vahala T (2002) Knotted1-like homeobox genes of gymnosperm, Norway spruce, expressed during somatic embryogenesis. Plant Physiol Biochem 40:837–843

    Article  CAS  Google Scholar 

  • Hou L, Ullrich SE, Kleinhofs A, Stiff CM (1993) Improvement of anther culture methods for doubled haploid production in barley breeding. Plant Cell Rep 12:334–338

    Article  Google Scholar 

  • Hu G, Yalpani N, Briggs SP, Johal GS (1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095–1105

    Article  PubMed  CAS  Google Scholar 

  • Imani J, Tran Thi L, Langen G, Arnholdt-Schmitt B, Roy S, Lein C, Kumar A, Neumann KH (2001) Somatic embryogenesis and DNA organization of genomes from selected Daucus species. Plant Cell Rep 20:537–541

    Article  CAS  Google Scholar 

  • Inzé D, Montagu MV (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

    Article  Google Scholar 

  • Ishikawa T, Takeda T, Shigeoka S, Hirayama O, Mitsunaga T (1993) Hydrogen peroxide generation in organelles of Euglena gracilis. Phytochemistry 33:1297–1299

    Article  CAS  Google Scholar 

  • Jevremović S, Petrić M, Zivković S, Trifunović M, Subotić A (2010) Superoxide dismutase activity and isoenzyme profiles in bulbs of snake’s head fritillary in response to cold treatment. Arch Biol Sci 62:553–558

    Google Scholar 

  • Jiménez VM, Bangerth F (2001) Endogenous hormone concentrations and embryogenic callus development in wheat. Plant Cell Tiss Org Cult 67:37–46

    Article  Google Scholar 

  • Kairong C, Gengsheng X, Xinmin L, Gengmei X, Yafu W (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbanum L. Plant Sci 146:9–16

    Article  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signalling and acclimatisation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  PubMed  CAS  Google Scholar 

  • Krikorian AD, Simola LK (1999) Totipotency, somatic embryogenesis, and Harry Waris (1893–1973). Physiol Plant 105:348–355

    Article  CAS  Google Scholar 

  • Loschiavo F, Pitto L, Giuliano G, Torti G, Nuti-Ronchi V, Marazziti D, Vergara R, Orselli S, Terzi M (1989) DNA methylation of embryogenic carrot cell cultures and its variation as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331

    Article  CAS  Google Scholar 

  • McCord JM, Friodovich I (1969) Superoxide dismutase. An enzyme function for erythrocuperein (hemocuperein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett 378:203–206

    Article  PubMed  CAS  Google Scholar 

  • Merkle SA, Parrott WA, Flinn BS (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 155–203

    Chapter  Google Scholar 

  • Mittler R, Zilinskas B (1991) Molecular cloning and nucleotide sequence analysis of a cDNA encoding pea cytosolic ascorbate peroxidase. FEBS Lett 289:257–259

    Article  PubMed  CAS  Google Scholar 

  • Möller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Morré DM, Lenaz G, Morré DJ (2000) Surface oxidase and oxidative stress propagation in aging. J Exp Biol 203:1513–1521

    PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  PubMed  CAS  Google Scholar 

  • Nomura K, Komamine A (1995) Physiological and biological aspects of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 249–266

    Chapter  Google Scholar 

  • Obert B, Dedicova B, Hricova A, Samaj J, Pretova A (2004) Flax anther culture: effect of genotype, cold treatment and media. Plant Cell Tiss Org Cult 79:233–238

    Article  CAS  Google Scholar 

  • Okuda T, Masuda Y, Yamanaka A, Sagisaka S (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol 97:1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan K, Cantliffe DJ, Koch KE (2001) Auxin-regulated gene expression and embryogenic competence in callus cultures of sweet potato, Ipomoea batatas (L.). Plant Cell Rep 20:187–192

    Article  CAS  Google Scholar 

  • Papadakis AK, Roubelakis-Angelakis A (1999) The generation of active oxygen species differs in tobacco and grapevine mesophyll protoplasts. Plant Physiol 121:197–205

    Article  PubMed  CAS  Google Scholar 

  • Papadakis AK, ChI Siminis, Roubelakis-Angelakis KA (2001) Reduced activity of antioxidant machinery is correlated with suppression of totipotency in plant protoplasts. Plant Physiol 126:434–444

    Article  PubMed  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, van Onckelen HA, Dudits D, Feher A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of Alfalfa. Plant Physiol 129:1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Pellegrineschi A, Brito RM, McLean S, Hoisington D (2004) Effect of 2, 4-dichlorophenoxyacetic acid and NaCl on the establishment of callus and plant regeneration in durum and bread wheat. Plant Cell Tiss Org Cult 77:245–250

    Article  CAS  Google Scholar 

  • Pellinen RI, Minna-Sisko K, Tauriainen AA, Palva ET, Kangasjärvi J (2002) Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiol 130:549–560

    Article  PubMed  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Stewart CR (1994) Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol 105:619–627

    PubMed  CAS  Google Scholar 

  • Purvis AC, Shewfelt RL, Gegogeine JW (1995) Superoxide production by mitochondria isolated from green bell pepper fruit. Physiol Plant 94:743–749

    Article  CAS  Google Scholar 

  • Qiusheng Z, Bao J, Likun L, Xianhua X (2005) Effects of antioxidants on the plant regeneration and GUS expressive frequency of peanut (Arachis hypogaea) explants by Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 81:83–90

    Article  Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Env Exp Bot 71:89–98

    Article  Google Scholar 

  • Rao KS (1996) Embryogenesis in flowering plants—recent approaches and prospects. J Biosci 21:827–841

    Article  Google Scholar 

  • Reilly K, Han Y, Tohme J, Beeching JR (2001) Isolation and characterisation of a cassava catalase expressed during post-harvest physiological deterioration. Biochim Biophys Acta 1518:317–323

    PubMed  CAS  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signalling. Plant Physiol 141:357–366

    Article  PubMed  CAS  Google Scholar 

  • Rose RJ, Mantiri FR, Kurdyukov S, Chen SK, Wang XD, Nolan KE, Sheahan MB (2010) Developmental biology of somatic embryogenesis. Plant Dev Biol Biotech Perspect 1:3–26

    Article  Google Scholar 

  • Roubelakis-Angelakis KA (1993) An assessment of possible factors contributing to recalcitrance of plant protoplasts. In: Roubelakis-Angelakis KA, Tranh TVK (eds) Morphogenesis in plants: molecular approaches. Plenum Publishing, New York, pp 201–219

    Google Scholar 

  • Sambrook J, Fritsh EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 100:7–12

    Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, De Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cell cultures. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  • Schrader S, Kaldenhoff R, Richter G (1997) Expression of novel genes during somatic embryogenesis of suspension cultured carrot cells (Daucus carota). J Plant Physiol 150:63–68

    Article  CAS  Google Scholar 

  • Schryer PA, Lu Q, Vandenberg A, Bett KE (2005) Rapid regeneration of Phaseolus angustissimus and P. vulgaris from very young zygotic embryos. Plant Cell Tiss Org Cult 83:67–74

    Article  CAS  Google Scholar 

  • Sinha S, Gupta M, Chandra P (1997) Oxidative stress induced by iron in Hydrilla verticillata (l.f.) Royle: response of antioxidants. Ecotoxicol Environ Saf 38:286–291

    Article  PubMed  CAS  Google Scholar 

  • Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochem Pol 54:39–50

    Google Scholar 

  • Somleva MN, Schmidt EDL, De Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726

    Article  CAS  Google Scholar 

  • Szechynska-Hebda M, Skrzypek E, Dabrowska G, Koscielniak J, Filek M, Wedzony M (2007) The role of oxidative stress induced by growth regulators in the regeneration process of wheat. Acta Physiol Plant 29:327–337

    Article  CAS  Google Scholar 

  • Szechyńska-Hebda M, Kruk J, Gorecka M, Karpinska B, Karpiński S (2010) Evidence for light wavelength-specific systemic photoelectrophysiological signalling and cellular light memory of excess light episode in Arabidopsis. Plant Cell 22:1–18

    Article  Google Scholar 

  • Tamás C, Szűcs P, Rakszegi M, Tamás L, Bedő Z (2004) Effect of combined changes in culture medium and incubation conditions on the regeneration from immature embryos of elite varieties of winter wheat. Plant Cell Tiss Org Cult 79:39–44

    Article  Google Scholar 

  • Toonen MAJ, De Vries SC (1996) Initiation of somatic embryos from single cells. In: Wang TL, Cuming A (eds) Embryogenesis: the generation of a plant. Bios Scientific Publishers, Oxford, pp 173–189

    Google Scholar 

  • Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Article  Google Scholar 

  • Vansuyt G, Lopez F, Inzé D, Briat JF, Fourcroy P (1997) Iron triggers a rapid induction of ascorbate peroxidase gene expression in Brassica napus. FEBS Lett 410:195–200

    Article  PubMed  CAS  Google Scholar 

  • Veljovic-Jovanovic S, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40:501–507

    Article  CAS  Google Scholar 

  • Vertucci CW (1989) The kinetics of seed imbibitions: controlling factors and relevance to seedling vigor. In: Stanwood PC, McDonald MB (eds) Seed moisture, CSSA Special Publication 14. Crop Science Society of America, Inc., Madison, pp 93–115

    Google Scholar 

  • Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  PubMed  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, van Montagu M, Inzé D, van Camp W (1997) Catalase is a sink for H2O2 and indispensable for stress defence in C3 plants. EMBO J 16:4806–4816

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Wilen RW, Robertson AJ, Gusta LV (1999) Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase, and chloroplastic copper/zinc superoxide dismutase genes in wheat. Plant Physiol 120:513–520

    Article  PubMed  CAS  Google Scholar 

  • Xynias IN, Zamani IA, Gouli-Vavdinoudi E (2001) Effect of cold pre-treatment and incubation temperature on bread wheat (Triticum aestivum L.) anther culture. Cereal Res Com 29:331–338

    Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase. Plant Physiol 123:223–233

    Article  PubMed  CAS  Google Scholar 

  • Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnhold-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electr J Biotech 13:1–9. doi:10.2225/vol13-issue1-fulltext-4

    Google Scholar 

  • Zhang S, Wong L, Meng L, Lemaux PG (2002) Similarity of expression patterns of knotted1 and zmlec1 during somatic and zygotic embryogenesis in maize (Zea mays L.). Planta 215:191–194

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Han S, Yang W, Wei H, Zhang M, Qi Li (2010) Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell Tiss Org Cult 100:21–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Szechyńska-Hebda.

Additional information

Communicated by W. Filek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szechyńska-Hebda, M., Skrzypek, E., Dąbrowska, G. et al. The effect of endogenous hydrogen peroxide induced by cold treatment in the improvement of tissue regeneration efficiency. Acta Physiol Plant 34, 547–560 (2012). https://doi.org/10.1007/s11738-011-0852-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0852-3

Keywords

Navigation