Skip to main content

Advertisement

Log in

Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Drought stress hampers rice performance principally by disrupting the plant–water relations and structure of biological membranes. This study appraised the role of polyamines (PAs) in improving drought tolerance in fine grain aromatic rice (Oryza sativa L.). Three PAs [putrescine (Put), spermidine (Spd) and spermine (Spm)] were used each at 10 μM as seed priming (by soaking seeds in solution) and foliar spray. Primed and non-primed seeds were sown in plastic pots with normal irrigation in a phytotron. At four-leaf stage, plants were subjected to drought stress by bringing the soil moisture down to 50% of field capacity by halting water supply. For foliar application, 10 μM solutions each of Put, Spd and Spm were sprayed at five-leaf stage. Results revealed that drought stress severely reduced the rice fresh and dry weights, while PAs application improved net photosynthesis, water use efficiency, leaf water status, production of free proline, anthocyanins and soluble phenolics and improved membrane properties. PAs improved drought tolerance in terms of dry matter yield and net photosynthesis was associated with the maintenance of leaf water status and improved water use efficiency. Among the antioxidants, catalase activity was negatively related to H2O2 and membrane permeability, which indicated alleviation of oxidative damage on cellular membranes by PAs application. Foliar application was more effective than the seed priming, and among the PAs, Spm was the most effective in improving drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

DHA:

Dehydroascorbate

Pro:

Free proline

ψw :

Leaf water potential

LSD:

Least significant difference

MDA:

Malondialdehyde

A :

Net rate of photosynthesis

ψs :

Osmotic potential

PPFD:

Photon flux density

PAs:

Polyamines

ψp :

Pressure potential

Put:

Putrescine

ROS:

Reactive oxygen species

RWC:

Relative water contents

Spd:

Spermidine

Spm:

Spermine

g s :

Stomatal conductance

SOD:

Superoxide dismutase

E :

Transpiration rate

WUE:

Water use efficiency

References

  • Abdul Jaleel C, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876. doi:10.1007/s10529-006-9179-3

    Article  PubMed  Google Scholar 

  • Ali RM (2000) Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Sci 152:173–179. doi:10.1016/S0168-9452(99)00227-7

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species metabolism, oxidative stress, a signaling transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701

    Article  PubMed  CAS  Google Scholar 

  • Basra RK, Basra AS, Malik CP, Grover IS (1997) Are polyamines involved in the heat-shock protection of mung bean seedlings? Bot Bull Acad Sin 38:165–169

    CAS  Google Scholar 

  • Bates LS, Waldern RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207. doi:10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344. doi:10.1007/s004250050567

    Article  CAS  Google Scholar 

  • Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effects of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta 189:201–206. doi:10.1007/BF00195077

    Article  CAS  Google Scholar 

  • Bilger W, Johnsen T, Schreiber U (2001) UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. J Exp Bot 52:2007–2014. doi:10.1093/jexbot/52.363.2007

    Article  PubMed  CAS  Google Scholar 

  • Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21:43–47

    Google Scholar 

  • Breusegem FV, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414. doi:10.1016/S0168-9452(01)00452-6

    Article  Google Scholar 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Kluwer, Dordrecht

    Google Scholar 

  • Davies PJ (2004) The plant hormones: their nature, occurrence and function. In: Davies PJ (ed) Plant hormones, biosynthesis, signal transduction, action. Kluwer, Dordrecht

    Google Scholar 

  • Drolet G, Dumbroff EB, Legge RL, Thkopson JE (1986) Radical scavenging properties of polyamines. Phytochemistry 25:367–371. doi:10.1016/S0031-9422(00)85482-5

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Hussain M, Rehman H, Saleem BA (2007) Incorporation of polyamines in the priming media enhances the germination and early seedling growth in hybrid sunflower (Helianthus annuus L.). Int J Agric Biol 9:868–872

    CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333. doi:10.1111/j.1439-037X.2008.00323.x

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009a) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. doi:10.1051/agro:2008021

    Article  Google Scholar 

  • Farooq M, Kobayashi N, Wahid A, Ito O, Basra SMA (2009b) Strategies for producing more rice with less water. Adv Agron 101:351–387

    Article  Google Scholar 

  • Feng Z, Guo A, Feng Z (2003) Amelioration of chilling stress by triadimefon in cucumber seedlings. Plant Growth Regul 39:277–283. doi:10.1023/A:1022881628305

    Article  CAS  Google Scholar 

  • Foyer CH, Fletcher JM (2001) Plant antioxidants: colour me healthy. Biologist 48:115–120

    PubMed  CAS  Google Scholar 

  • Galston AW, Sawhney RK, Altabella T, Tiburcio AF (1997) Plant polyamines in reproductive activity and response to abiotic stress. Bot Acta 110:197–207

    CAS  Google Scholar 

  • Garcia-Plazaola JI, Becerril JM (2000) Effects of drought on photoprotective mechanisms in European beech (Fagus sylvatica L) seedlings from different provenances. Trees (Berl) 14:485–490. doi:10.1007/s004680000068

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1

    Article  PubMed  CAS  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008a) Exogenous application of glycinebetaine and salicylic acid improves drought tolerance in sunflower. J Agron Crop Sci 194:193–199. doi:10.1111/j.1439-037X.2008.00305.x

    Article  CAS  Google Scholar 

  • Hussain M, Farooq M, Jabran K, Rehman H, Akram M (2008b) Exogenous glycinebetaine application improves yield under water limited conditions in hybrid sunflower. Arch Agron Soil Sci 54:557–567. doi:10.1080/03650340802262086

    Article  CAS  Google Scholar 

  • Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Agric Food Chem 33:213–217. doi:10.1021/jf00062a013

    Article  CAS  Google Scholar 

  • Kumar SG, Mattareddy A, Sudhakar C (2003) NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci 165:1245–1251. doi:10.1016/S0168-9452(03)00332-7

    Article  CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381. doi:10.1007/s00425-008-0772-7

    Article  PubMed  CAS  Google Scholar 

  • Lee TM (1997) Polyamine regulation of growth and chilling tolerance of rice (Oryza sativa L.) roots cultured in vitro. Plant Sci 122:111–117. doi:10.1016/S0168-9452(96)04542-6

    Article  CAS  Google Scholar 

  • Liu K, Fu HH, Bei QX, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1325. doi:10.1104/pp.124.3.1315

    Article  PubMed  CAS  Google Scholar 

  • Liu J-H, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    CAS  Google Scholar 

  • Luck H (1974) Catalases. In: Bergmeyer HU (ed) Methods of enzymatic analysis 2. Academic Press, New York

    Google Scholar 

  • McCord JM, Fridovitch I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (Hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Munne-Bosch S, Penuelas J (2003) Photo and antioxidative protection, and a role for salicylic acids during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766. doi:10.1007/s00425-003-1037-0

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts: its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140

    CAS  Google Scholar 

  • Nayyar H, Chander S (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J Agron Crop Sci 190:355–365. doi:10.1111/j.1439-037X.2004.00106.x

    Article  CAS  Google Scholar 

  • Nayyar H, Kaur S, Kumar SS, Singh KJ, Dhir KK (2005) Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Bot Bull Acad Sin 46:333–338

    CAS  Google Scholar 

  • Olga B, Eija V, Kurt VF (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond) 91:179–194. doi:10.1093/aob/mcf118

    Article  Google Scholar 

  • Razmjoo K, Heydarizadeh P, Sabzalian MR (2008) Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomile. Int J Agric Biol 10:451–454

    Google Scholar 

  • Richards FJ, Coleman RG (1952) Determination of creatinine. Nature 170:460. doi:10.1038/170460a0

    Article  PubMed  CAS  Google Scholar 

  • Roberts DR, Dumbroff EB, Thompson JE (1986) Exogenous polyamines alter membrane fluidity in bean leaves—a basis for their potential misinterpretation of their true physiological role. Planta 167:395–401. doi:10.1007/BF00391345

    Article  CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135. doi:10.1007/s10725-005-5482-6

    Article  CAS  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219. doi:10.1016/S0958-1669(98)80118-3

    Article  PubMed  CAS  Google Scholar 

  • Stark D, Wray V (1989) Anthocyanins. In: Harborne JB (ed) Methods in plant biology, vol I. Plant phenolics. Academic Press/Harcourt Brace Jovanovich, London, pp 325–356

    Google Scholar 

  • Takahama U, Oniki T (1997) A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol Plant 101:845–852. doi:10.1111/j.1399-3054.1997.tb01072.x

    Article  CAS  Google Scholar 

  • Teranishi Y, Tanaka A, Osumi M, Fukui S (1974) Catalase activity of hydrocarbon utilising candida yeast. Agric Biol Chem 38:1213–1216

    CAS  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis and accumulation of nitric acid (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354. doi:10.1093/pcp/pci252

    Article  PubMed  CAS  Google Scholar 

  • Wahid A (2007) Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120:219–228. doi:10.1007/s10265-006-0040-5

    Article  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223. doi:10.1016/j.envexpbot.2007.05.011

    Article  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58:1545–1555. doi:10.1093/jxb/erm032

    Article  PubMed  CAS  Google Scholar 

  • Yokota A, Kawasaki S, Iwano M, Nakamura C, Miyake C, Akashi K (2002) Citrulline and DRIP-1 protein (ArgE Homologue) in drought tolerance of wild watermelon. Ann Bot (Lond) 89:825–832. doi:10.1093/aob/mcf074

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant.53.091401.143329

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Farooq.

Additional information

Communicated by Z. Gombos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farooq, M., Wahid, A. & Lee, DJ. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31, 937–945 (2009). https://doi.org/10.1007/s11738-009-0307-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0307-2

Keywords

Navigation