Skip to main content
Log in

Temperature-dependent impact of 24-epibrassinolide on the fatty acid composition and sugar content in winter oilseed rape callus

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The aim of this experiment was to study the effect of 24-epibrassinolide (BR27) on fatty acids composition and sugar content in winter oilseed rape callus cultured at 20 and 5°C. Studies have showed that BR27 action is highly temperature-dependent. The increase in sugar content (sucrose, glucose and fructose) by BR27 in concentration 100 nM was observed only in calli cultured at 20°C. At 5°C, quite the opposite effect of BR27 action was observed; where cold increased the sugar content, BR27 decreased it. BR27 at 20°C had a similar effect on the fatty acid composition of phospholipids (PL) as the cold in the process of frost hardening of oilseed rape calli. BR27 decreased the 16:0, 18:1 and 18:2 and increased the 18:3 fatty acid content. At 5°C, BR27 (100 nM) generally did not influence the fatty acid composition of PL. In case of digalactosyl diacylglycerols and monogalactosyl diacylglycerols, the influence of BR27 on the fatty acid composition is ambiguous but still depends on temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PL:

Phospholipids

DG:

Digalactosyl diacylglycerols

MG:

Monogalactosyl diacylglycerols

BR27 :

24-Epibrassinolide (according to Mandava 1988; Zullo and Kohout 2004)

BR:

Brassinosteroids

16:0:

Palmitic acid

18:0:

Stearic acid

18:1:

Oleic acid

18:2:

Linoleic acid

18:3:

Linolenic acid

References

  • Bakht J, Bano A, Dominy P (2006) The role of abscisic acid and low temperature in chickpea (Cicer arietinum) cold tolerance: II. Effects on plasma membrane structure and function. J Exp Bot 57:3707–3715. doi:10.1093/jxb/erl120

    Article  PubMed  CAS  Google Scholar 

  • Bishop GJ, Yokota T (2001) Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol 42:114–120. doi:10.1093/pcp/pce018

    Article  PubMed  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  • Braun P, Wild A (1984) The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. J Plant Physiol 116:189–196

    CAS  Google Scholar 

  • Bredemeijer GMM, Esselink G (1995) Sugar metabolism in cold-hardened Lolium perenne varieties. Plant Var Seeds 8:187–195

    Google Scholar 

  • Dahse I, Sack H, Bernstein M, Petzold U, Müller E, Vorbrodt HM et al (1990) Effects of (22S, 23S)-homobrassinolide and related compounds on membrane potential and transport of egeria leaf cells. Plant Physiol 93:1268–1271

    Article  PubMed  CAS  Google Scholar 

  • Dallaire S, Houde M, Gagné Y, Saini HS, Boileau S, Chevrier N et al (1994) ABA and low temperature induce freezing tolerance via distinct regulatory pathways in wheat. Plant Cell Physiol 35:1–9

    CAS  Google Scholar 

  • Ehsanpour AA, Amini F (2003) Effect of salt and drought stress on acid phosphatase activities in alfalfa (Medicago sativa L.) explants under in vitro culture. Afr J Biotechnol 2:133–135

    CAS  Google Scholar 

  • Eun JS, Kuraishi S, Sakurai N (1989) Changes in levels of auxin and abscisic acid and the evolution of ethylene in squash hypocotyls after treatment with brassinolide. Plant Cell Physiol 30(6):807–810

    CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 225:497–509

    Google Scholar 

  • Gaudinová A, Sűssenbeková H, Vojtěchová M, Kaminek M, Eder J, Kohout L (1995) Different effects of two brassinosteroids on growth, auxin and cytokinin content in tobacco callus tissue. Plant Growth Regul 17:121–126. doi:10.1007/BF00024171

    Article  Google Scholar 

  • Grindstaff KK, Fielding LA, Brodl MR (1996) Effect of gibberellin and heat shock on the lipid composition of endoplasmic reticulum in barley aleurone layers. Plant Physiol 110:571–581

    PubMed  CAS  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD et al (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217. doi:10.1038/281216a0

    Article  CAS  Google Scholar 

  • Haubrick LL, Assmann SM (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ 29:446–457. doi:10.1111/j.1365-3040.2005.01481.x

    Article  PubMed  CAS  Google Scholar 

  • Hurry VM, Strand Å, Tobiaeson M, Gardeström P, Öquist G (1995) Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol 109:697–706

    PubMed  CAS  Google Scholar 

  • Janeczko A (2000) The influence of selected steroids on plant physiological processes—especially on flowering induction. Doctor Theses, Agricultural University, Krakow, Poland

  • Janeczko A, Kościelniak J, Pilipowicz M, Szarek-Łukaszewska G, Skoczowski A (2005) Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43:293–298. doi:10.1007/s11099-005-0048-4

    Article  CAS  Google Scholar 

  • Janeczko A, Gullner G, Skoczowski A, Dubert F, Barna B (2007) Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol Plant 51:355–358. doi:10.1007/s10535-007-0072-2

    Article  CAS  Google Scholar 

  • Johnson G, Williams JP (1989) Effect of growth temperature on the biosynthesis of chloroplastic galactosyldiacylglycerol molecular species in Brassica napus leaves. Plant Physiol 91:924–929

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Flanagan AM, Huiwen Z, Thiagarajah MR, Saini HS (1991) Role of abscisic acid in the induction of freezing tolerance in Brassica napus suspension-cultured cells. Plant Physiol 95:1044–1048

    Article  PubMed  CAS  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297. doi:10.1007/s00344-003-0058-z

    Article  PubMed  CAS  Google Scholar 

  • Kubacka-Zębalska M, Kacperska A (1999) Low temperature-induced modifications of cell wall content and polysaccharide composition in leaves of winter oilseed rape (Brassica napus var. oleifera L.). Plant Sci 148:59–67. doi:10.1016/S0168-9452(99)00122-3

    Article  Google Scholar 

  • Kuiper PJC (1985) Environmental changes and lipid metabolism of higher plants. Physiol Plant 64:118–122. doi:10.1111/j.1399-3054.1985.tb01221.x

    Article  CAS  Google Scholar 

  • Kull U, Kühn B, Schweizer J, Weiser H (1978) Short-term effects of cytokinins on the lipid fatty acids of green leaves. Plant Cell Physiol 19:801–810

    CAS  Google Scholar 

  • Lee SP, Chen THH (1993) Molecular cloning of abscisic acid-responsive messenger RNAs expressed during the induction of freezing tolerance in Bromegrass (Bromus inermis Leyss) suspension culture. Plant Physiol 101:1089–1096. doi:10.1104/pp.101.3.1089

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Huang B (2002) Cytokinin effects on creeping bentgrass response to heat stress. II. Leaf senescence and antioxidant metabolism. Crop Sci 42:466–472

    CAS  Google Scholar 

  • Liu W, Hildebrand DF, Collins GB (1995) Auxin-regulated changes of fatty acid content and composition in soybean zygotic embryo cotyledons. Plant Sci 106:31–42. doi:10.1016/0168-9452(95)04067-5

    Article  CAS  Google Scholar 

  • Lu Z, Huang M, Ge DP, Yang YH, Cai XN, Qin P et al (2003) Effect of brassinolide on callus growth and regeneration in Spartina patens (Poaceae). Plant Cell Tissue Organ Cult 73:87–89. doi:10.1023/A:1022665210113

    Article  CAS  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52. doi:10.1146/annurev.pp.39.060188.000323

    Article  CAS  Google Scholar 

  • Mazliak P (1977) Glyco- and phospholipids of biomembranes in higher plants. In: Tevini M, Lichtenthaler HK (eds) Lipids and lipid polymers in higher plants, vol 3. Springer, Berlin, pp 48–72

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with plant tissue culture. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Núñez M, Siqueira WJ, Hernández M, Zullo MAT, Robaina C, Coll F (2004) Effect of spirostane analogues of brassinosteroids on callus formation and plant regeneration in lettuce (Lactuca sativa). Plant Cell Tissue Organ Cult 78:97–99. doi:10.1023/B:TICU.0000020400.79230.c7

    Article  Google Scholar 

  • Ono EO, Nakamura T, Machado SR, Rodrigues JD (2000) Application of brassinosteroid to Tabebuia alba (Bignoniaceae) plants. Rev Bras Fisiol Vegetal 12:187–194. doi:10.1590/S0103-31312000000300002

    CAS  Google Scholar 

  • Pontis HG (1989) Fructans and cold stress. J Plant Physiol 134:148–150

    CAS  Google Scholar 

  • Rapacz M, Dawid K (1999) An opportunity for fast and reliable evaluation of winter oilseed rape frost resistance using in vitro cultures. J Agron Crop Sci 182:193–198. doi:10.1046/j.1439-037x.1999.00282.x

    Google Scholar 

  • Rivera CM, Penner D (1978) Rapid changes in soybean root membrane lipids with altered temperature. Phytochemistry 17:1269–1272. doi:10.1016/S0031-9422(00)94570-9

    Article  CAS  Google Scholar 

  • Robertson AJ, Ishikawa M, Gusta LV (1995) The effect of prolonged abscisic acid treatment on the growth, freezing tolerance and protein patterns of Bromus inermis (Leyss) cell suspensions cultured at either 3 degrees or 25 degrees C. J Plant Physiol 145:137–142

    CAS  Google Scholar 

  • Ryyppö A, Vapaavuori EM, Rikala R, Sutinen ML (1994) Fatty acid composition of microsomal phospholipids and H+-ATP-ase activity in the roots of Scots pine seedlings grown at different root temperatures during flushing. J Exp Bot 45:1533–1539. doi:10.1093/jxb/45.11.1533

    Article  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288. doi:10.1007/s00344-003-0062-3

    Article  PubMed  CAS  Google Scholar 

  • Skoczowski A (1999) Influence of cold on selected physiological processes in plants especially on flowering induction. Monograph 8, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland

  • Skoczowski A, Filek M (1986) Cold induced-changes in lipids from hypocotyls of winter and spring rape. I. The lipid synthesis and fatty acids composition. Acta Physiol Plant 8:203–212

    CAS  Google Scholar 

  • Skoczowski A, Filek M (1994) Changes in fatty acids composition in the subcellular fraction from hypocotyls of winter rape growing at 2°C and 20°C. Plant Sci 98:127–133. doi:10.1016/0168-9452(94)90002-7

    Article  CAS  Google Scholar 

  • Vágújfalvi A, Kerepesi I, Galiba G, Tischner T, Sutka J (1999) Frost hardiness depending on carbohydrate changes during cold acclimation in wheat. Plant Sci 144:85–92. doi:10.1016/S0168-9452(99)00058-8

    Article  Google Scholar 

  • Vardhini BV, Rao SSR (1998) Effect of brassinosteroids on growth, metabolite content and yield of Arachis hypogaea. Phytochemistry 48:927–930. doi:10.1016/S0031-9422(97)00710-3

    Article  CAS  Google Scholar 

  • Willemot C (1979) Chemical modification of lipids during frost hardening of herbaceous species. In: Lyons JM, Graham D, Raison JK (eds) Low temperature stress in crop plants. Academic, New York, pp 411–430

    Google Scholar 

  • Yamaryo Y, Kanai D, Awai K, Shimojima M, Masuda T, Shimada H et al (2003) Light and cytokinin play a co-operative role in MGDG synthesis in greening cucumber cotyledons. Plant Cell Physiol 44:844–855. doi:10.1093/pcp/pcg110

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Uemura M (1984) Protein and lipid composition of isolated plasma membranes from orchard grass (Dactylis glomerata L.) and changes during cold acclimation. Plant Physiol 75:31–37

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Uemura M (1990) Responses of the plasma membrane to cold acclimation and freezing stress. In: Larsson C, Moller IM (eds) The plasma membrane. Structure, function, and molecular biology. Springer, Berlin, pp 293–319

    Google Scholar 

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF et al (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143. doi:10.1093/jxb/erh124

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Ryu SB, Li PH (1990) Effect of abscisic acid biosynthesis inhibitor on cold-induced hardiness in cultured plant cells. Plant Physiol 93(suppl 1):84

    Google Scholar 

  • Zullo MAT, Kohout L (2004) Semisystematic nomenclature of brassinosteroids. Plant Growth Regul 42:15–28. doi:10.1023/B:GROW.0000014898.30414.33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Janeczko.

Additional information

Communicated by S. Lewak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janeczko, A., Hura, K., Skoczowski, A. et al. Temperature-dependent impact of 24-epibrassinolide on the fatty acid composition and sugar content in winter oilseed rape callus. Acta Physiol Plant 31, 71–79 (2009). https://doi.org/10.1007/s11738-008-0202-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-008-0202-2

Keywords

Navigation