Skip to main content
Log in

The role of oxidative stress induced by growth regulators in the regeneration process of wheat

Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

As part of work to optimize the regeneration processes of winter wheat callus culture the effects of two auxins (2,4-D, IAA), two cytokinins (kinetin, zeatin), and the fungal mycotoxin zearalenone, were tested individually in vitro using embryo-, and inflorescence-derived callus. To determine the role of oxidative stress in cell regeneration, changes in the basic antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and peroxidases (PODs) were investigated. In general, zearalenone (ZEN) was found to be more effective than cytokinin treatments for inducing shoot production, whereas auxins suppressed the regeneration process. Regenerating callus showed higher induction of these antioxidant enzymes in comparison with non-regenerating callus. SOD, CAT and POD activities were higher in callus derived from inflorescence than in callus derived from immature embryo. Activities of SOD, CAT and POD in culture derived from immature embryos were depending on type of growth regulator in medium. The highest enzyme activities were observed in non-regenerating tissues after auxins treatment and in regenerating tissues after cytokinins treatment. The effect of ZEN was similar to that of cytokinins. One MnSOD band and two Cu/ZnSOD bands were detected in all cultures. Changes in SOD izoform patterns occurred in callus culture on media with auxins and ZEN, but not on media with cytokinins. Our results suggest that callus regeneration is associated with reactive oxygen species production induced by specific growth regulators. Reactive oxygen species under the control of cellular antioxidant machinery can mediate signalling pathways between exogenously applied growth regulators and the induction and/or creation of the direction of morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

IAA:

Indole-3-acetic acid

NRE:

Non-regenerating calli initiated from embryo

NRI:

Non-regenerating calli initiated from inflorescence

RE:

Regenerating calli initiated from embryo

RI:

Regenerating calli initiated from inflorescence

ZEN:

Zearanenone, [6-10-hydroxy-6-oxo-trans-1-undecenyl-α-resorcylic acid lactone]

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–125

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase: a hydrogen peroxide—scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–87

    Article  PubMed  Google Scholar 

  • Benkirane H, Sabounji K, Chlyah A (2000) Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat. Plant Cell Tissue Organ Cult 61:107–113

    Article  Google Scholar 

  • Biesaga-Koscielniak J, Marcinska I, Wedzony M, Koscielniak J (2003) Effect of zearalenone treatment on the production of wheat haploids via the maize pollination system. Plant Cell Rep 21:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microprogram quantitaties of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chiappetta A, Michelotti V, Fambrini M, Bruno L, Salvini M, Petrarulo M, Azmi A, Van Onckelen H, Pugliesi C, Bitonti MB (2005) Zeatin accumulation and misexpression of a class I knoxgene are intimately linked in the epiphyllous response of the interspecific hybrid EMB-2 (Helianthus annuus H. tuberosus). Planta doi:10.1007/s00425–005–0150–7

  • Clarke SF, Burritt DJ, Jameson PE, Guy PL (2000) Influence of plant hormones on white clover mosaic potexvirus double stranded RNA. Plant Pathol 49:428–434

    Article  CAS  Google Scholar 

  • Cutler A, Saleem M, Wang H (1991) Cereal protoplast recalcitrance. In Vitro Cell Dev Biol 27:104–111

    Article  Google Scholar 

  • Daimon Y, Takabe K, Tasaka M (2003) The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol 44:113–121

    Article  PubMed  CAS  Google Scholar 

  • Danicke S, Brussow KP, Valenta H, Ueberschar KH, Tiemann U, Schollenberger M (2005) On the effects of graded levels of Fusarium toxin contaminated wheat in diets for gilts on feed intake, growth performance and metabolism of deoxynivalenol and zearalenone. Mol Nutr Food Res 49:932–943

    Article  PubMed  CAS  Google Scholar 

  • Fisher C, Neuhaus G (1996) Influence of auxin on the establishment of bilateral symmetry in monocots. Plant J 9:659–669

    Article  Google Scholar 

  • Guo DP, Zhu ZJ, Hu XX, Zheng SJ (2005) Effect of cytokinins on shoot regeneration from cotyledon and leaf segment of stem mustard (Brassica juncea var. tsatsai). Plant Cell Tissue Organ Cult 83:123–127

    Article  CAS  Google Scholar 

  • Hake S, Smith HMS, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of knox genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    Article  PubMed  CAS  Google Scholar 

  • Halperin W (1986) Attainment and retention of morphogenetic capacity in vitro. In: Vasil IK (ed) Plant regeneration and genetic variability. Academic, London, vol 3, pp 3–47

  • Hassan HM, Fridovich I (1977) Regulation of the synthesis of superoxide dismutase in Escherichia coli. J Biol Chem 252:7667–7672

    PubMed  CAS  Google Scholar 

  • Hjortswang HI, Sundas Larsson A, Bharathan G, Bozhkov PV, Von Arnold S, Vahala T (2002) KNOTTED1-like homeobox genes of gymnosperm, Norway spruce, expressed during somatic embryogenesis. Plant Physiol Biochem 40:837–843

    Article  CAS  Google Scholar 

  • Iantcheva A, Slavov S, Prinsen E, Vlahova M, van Onckelen H, Atanassov A (2005) Embryo induction and regeneration from root explants of Medicago truncatula after osmotic pre-treatment. Plant Cell Tissue Organ Cult 81:37–43

    Article  CAS  Google Scholar 

  • Illés E, Szabó M, Csiszár J (2002) Stress tolerance in auxin heterotrophic and autotrophic tobacco tissue cultures Proceedings of the 7th Hungarian Congress on Plant Physiology. Acta Biol Szeged 46:83–84

    Google Scholar 

  • Jiménez VM, Bangerth F (2001) Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol Plant 111:389–395

    Article  PubMed  Google Scholar 

  • Kairong C, Gengsheng X, Xinmin L, Gengmei X, Yafu W (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbanum L. Plant Sci 146:9–16

    Article  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signalling and acclimatisation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  PubMed  CAS  Google Scholar 

  • Lattoo SK, Bamotra S, Sapru Dhar R, Khan S, Dhar AK (2005) Rapid plant regeneration and analysis of genetic fidelity of in vitro derived plants of Chlorophytum arundinaceum Baker-an endangered medicinal herb. Plant Cell Rep doi:10.1007/s00299–005–0103–4

  • Li WZ, Song ZH, Guo BT, Xu LJ (2001) The effects of DNA hypomethylating drugs on androgenesis in barley (Hordeum vulgare L.). In Vitro Cell Dev Biol Plant 37:605–608

    Article  CAS  Google Scholar 

  • Limam F, Chahed K, Ouelhazi N, Ghrir R, Ouelhazi L (1998) Phytohormones regulation of isoperoxidases in Catharanthus roseus suspension culture. Phytochemistry 49:1219–1225

    Article  PubMed  CAS  Google Scholar 

  • Loschiavo F, Pitto L, Giuliano G, Torti G, Nuti-Ronchi V, Marazziti D, Vergara R, Orselli S, Terzi M (1989) DNA methylation of embryogenic carrot cell cultures and its variation as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331

    Article  CAS  Google Scholar 

  • Lück (1962) Methoden der enzymatischen Analyse. In: Bergmeyer HU (eds) Verlag Chemie, GmbH Weinheim, pp 895–897

  • de Marco A, Roubelakis-Angelakis KA (1996) The complexity of enzymic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplasts. Plant Physiol 11:137–145

    Google Scholar 

  • de Marco A, Guzzardi P, Jamet E (1999) Isolation of tobacco isoperoxidases accumulated in cell-suspension culture medium and characterisation of activities related to cell wall metabolism. Plant Physiol 120:371–381

    Article  PubMed  Google Scholar 

  • McCord JM, Fiodovich I (1969) Superoxide dismutase. An enzimic function for erytrocuperein (hemocuperein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Menke-Milczarek I, Zimny J (2001) NH4+ and NO3- requirement for wheat somatic embryogenesis. Acta Physiol Plant 23:37–42

    Article  CAS  Google Scholar 

  • Menna ME, Lauren DR, Hardacre A (1997) Fusaria and Fusarium toxins in New Zealand maize plants. Mycopathologia 139:165–173

    Article  PubMed  Google Scholar 

  • Michalczuk L, Ribnicky DM, Cooke TJ, Cohen JD (1992) Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neumann KH (2000) Some studies on somatic embryogenesis, a tool in plant biotechnology, 87th Indian Science Congress Jan. 2000 in Pune, India

  • Padmanabhan K, Cantliffe DJ, Koch KE (2001) Auxin-regulated gene expression and embryogenic competence in callus cultures of sweetpotato, Ipomoea batatas (L.) Lam. Plant Cell Rep 20:187–192

    Article  CAS  Google Scholar 

  • Pan SM, Yau YY (1992) Characterization of superoxide dismutase in Arabidopsis. Plant Cell Physiol 37:58–66

    Google Scholar 

  • Papadakis AK, Roubelakis-Angelakis A (1999) The generation of active oxygen species differs in tobacco and grapevine mesophyll protoplasts. Plant Physiol 121:197–205

    Article  PubMed  CAS  Google Scholar 

  • Papadakis AK, Siminis Ch I, Roubelakis-Angelakis KA (2001) Reduced activity of antioxidant machinery is correlated with suppression of totipotency in plant protoplasts. Plant Physiol 126:434–444

    Article  PubMed  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of Alfalfa. Plant Physiol 129:1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Pellegrineschi A, Brito RM, McLean S, Hoisington D (2004) Effect of 2,4-dichlorophenoxyacetic acid and NaCl on the establishment of callus and plant regeneration in durum and bread wheat. Plant Cell Tissue Organ Cult 77:245–250

    Article  CAS  Google Scholar 

  • Picciarelli P, Ceccarelli N, Paolicchi F, Calistri G (2001) Endogenous auxin and embryogenesis in Phaseolus coccineus. Aust J Plant Physiol 28:73–78

    CAS  Google Scholar 

  • Qiusheng Z, Bao J, Likun L, Xianhua X (2005) Effects of antioxidants on the plant regeneration and GUS expressive frequency of peanut (Arachis hypogaea) explants by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 81:83–90

    Article  CAS  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signalling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  PubMed  CAS  Google Scholar 

  • Roubelakis-Angelakis KA (1993) An assessment of possible factors contributing to recalcitrance of plant protoplasts. In: Roubelakis-Angelakis KA, Tranh Tan Van K (eds) Morphogenesis in plants: molecular approaches. Plenum Publishing, New York, pp 201–219

    Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 100:7–12

    Google Scholar 

  • Schiavone FM, Cooke TJ (1987) Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxin and auxin transport inhibitors. Cell Differ 21:53–62

    Article  PubMed  CAS  Google Scholar 

  • Sieberer T, Hauser MT, Seifert GJ, Luschnig C (2003) PROPORZ1, a putative Arabidopsis transcriptional adaptor protein, mediates auxin and cytokinin signals in the control of cell proliferation. Curr Biol 13:837–842

    Article  PubMed  CAS  Google Scholar 

  • Siminis CI, Kanellis AK, Roubelakis-Angelakis KA (1993) Differences in protein synthesis and peroxidase isoenzymes between recalcitrant and regenerating protoplasts. Physiol Plant 87:263–270

    Article  CAS  Google Scholar 

  • Synkova H, Semoradova S, Burketova L (2004) High content of endogenous cytokinins stimulates activity of enzymes and proteins involved in stress response in Nicotiana tabacum. Plant Cell Tissue Organ Cult 79:169–179

    Article  CAS  Google Scholar 

  • Tamás C, Szücs P, Rakszegi M, Tamás L, Bedö Z (2004) Effect of combined changes in culture medium and incubation conditions on the regeneration from immature embryos of elite varieties of winter wheat. Plant Cell Tissue Organ Cult 79:39–44

    Article  Google Scholar 

  • Vergara R, Verde F, Pitto L, Loschiavo F, Terzi M (1990) Reversible variations in the methylation pattern of carrot DNA during somatic embryogenesis. Plant Cell Rep 8:697–700

    Article  CAS  Google Scholar 

  • Wang H, Meng FJ (1990) Formation of endogenous zearalenone and it inhibition by malathion in winter wheat during vernalization. Acta Phytophysiol Sin 16:197–200

    CAS  Google Scholar 

  • Willekens H, Inze D, Van Montagu M, Van Camp W (1995) Catalases in plants. Mol Breed 1:207–228

    Article  CAS  Google Scholar 

  • Willekens H, Chamnongpol SCh, Davey M, Schraudner M, Langebartels Ch Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J 16:4806–4816

    Article  PubMed  CAS  Google Scholar 

  • Wu IF, Chen JT, Chang W Ch (2004) Effects of auxins and cytokinins on embryo formation from root-derived callus of Oncidium ‘Gower Ramsey’. Plant Cell Tissue Organ Cult 77:107–109

    Article  CAS  Google Scholar 

  • Zhang S, Wong L, Meng L, Lemaux PG (2002) Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize (Zea mays L.). Planta 215:191–194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Polish Committee for Scientific Research in Warsaw, grant no 3P06A 00925. The authors thank Dr. S. Querry (Department of Agriculture and Environmental Science, University of Newcastle upon Tyne, UK) for thoughtful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Szechyńska-Hebda.

Additional information

Communicated by G. Lorenc-Plucinska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szechyńska-Hebda, M., Skrzypek, E., Dąbrowska, G. et al. The role of oxidative stress induced by growth regulators in the regeneration process of wheat. Acta Physiol Plant 29, 327–337 (2007). https://doi.org/10.1007/s11738-007-0042-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-007-0042-5

Keywords

Navigation