Skip to main content
Log in

Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Magnesium hydroxide is an important chemical, and is usually obtained from seawater or brine via precipitation process. The particle size distribution of magnesium hydroxide has great effects on the subsequent filtration and drying processes. In this paper, micron-sized magnesium hydroxide with high purity, large particle size and low water content in filter cake was synthesized via simple wet precipitation in a mixed suspension mixed product removal (MSMPR) crystallizer. The effects of reactant concentration, residence time and impurities on the properties of magnesium hydroxide were investigated by X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Malvern laser particle size analyzer. The results show that NaOH concentration and residence time have great effects on the water content and particle size of Mg(OH)2. The spherical Mg(OH)2 with uniform diameter of about 30 μm was obtained with purity higher than 99% and water content less than 31%. Furthermore, the crystallization kinetics based on the population balance theory was studied to provide the theoretical data for industrial enlargement, and the simulation coefficients (R 2) based on ASL model and C-R model are 0.9962 and 0.9972, respectively, indicating that the crystal growth rate of magnesium hydroxide can be well simulated by the sizedependent growth models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Tai C M, Li R K Y. Studies on the impact fracture behaviour of flame retardant polymeric material. Materials & Design, 2001, 22(1): 15–19

    Article  CAS  Google Scholar 

  2. Chen X L, Yu J, Guo S Y. Structure and properties of polypropylene composites filled with magnesium hydroxide. Journal of Applied Polymer Science, 2006, 102(5): 4943–4951

    Article  CAS  Google Scholar 

  3. Cao H Q, Zheng H, Yin J F, Lu Y X, Wu S S, Wu X M, Li B J. Mg(OH)2 Complex nanostructures with superhydrophobicity and flame retardant effects. Journal of Physical Chemistry C, 2010, 114(41): 17362–17368

    Article  CAS  Google Scholar 

  4. Gui H, Zhang X H, Dong WF, Wang Q G, Gao JM, Song Z H, Lai J M, Liu Y Q, Huang F, Qiao J L. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites. Polymer, 2007, 48(9): 2537–2541

    Article  CAS  Google Scholar 

  5. Zhang S N, Cheng F Y, Tao Z L, Gao F, Chen J. Removal of nickel ions from wastewater by Mg(OH)2/MgO nanostructures embedded in Al2O3 membranes. Journal of Alloys and Compounds, 2006, 426(1–2): 281–285

    Article  CAS  Google Scholar 

  6. Béarat H, McKelvy M J, Chizmeshya A V G, Sharma R, Carpenter R W. Magnesium hydroxide dehydroxylation/carbonation reaction processes: implications for carbon dioxide mineral sequestration. Journal of the American Ceramic Society, 2002, 85(4): 742–748

    Article  Google Scholar 

  7. Kang J C, Schwendeman S P. Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly (D,L-lactide-co-glycolide) implants. Biomaterials, 2002, 23(1): 239–245

    Article  CAS  Google Scholar 

  8. Kakaraniya S, Kari C, Verma R, Mehra A. Gas Absorption in Slurries of Fine Particles: SO2-Mg(OH)2-MgSO3 System. Industrial & Engineering Chemistry Research, 2007, 46(7): 1904–1913

    Article  CAS  Google Scholar 

  9. Olanders B, Strömberg D. Reduction of nitric oxide over magnesium oxide and dolomite at fluidized bed conditions. Energy & Fuels, 1995, 9(4): 680–684

    Article  CAS  Google Scholar 

  10. Yan L, Zhuang J, Sun XM, Deng Z X, Li Y D. Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Materials Chemistry and Physics, 2002, 76(2): 119–122

    Article  CAS  Google Scholar 

  11. Yoshida T, Tanaka T, Yoshida H, Funabiki T, Yoshida S, Murata T. Study of dehydration of magnesium hydroxide. Journal of Physical Chemistry, 1995, 99(27): 10890–10896

    Article  CAS  Google Scholar 

  12. L’vov B V, Novichikhin A V, Dyakov A O. Mechanism of thermal decomposition of magnesium hydroxide. Thermochimica Acta, 1998, 315(2): 135–143

    Article  Google Scholar 

  13. Yu J C, Xu A W, Zhang L Z, Song R Q, Wu L. W L. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. Journal of Physical Chemistry B, 2004, 108(1): 64–70

    Article  CAS  Google Scholar 

  14. Zou G L, Liu R, Chen W X, Xu Z D. Preparation and characterization of lamellar-like Mg(OH)2 nanostructures via natural oxidation of Mg metal in formamide/water mixture. Materials Research Bulletin, 2007, 42(6): 1153–1158

    Article  CAS  Google Scholar 

  15. Ranjit K T, Klabunde K J. Solvent effects in the hydrolysis of magnesium methoxide, and the production of nanocrystalline magnesium hydroxide. An aid in understanding the formation of porous inorganic materials. Chemistry of Materials, 2005, 17(1): 65–73

    CAS  Google Scholar 

  16. Sun X T, Xiang L, Zhu W C, Liu Q. Influence of solvents on the hydrothermal formation of one-dimensional magnesium hydroxide. Crystal Research and Technology, 2008, 43(10): 1057–1061

    Article  CAS  Google Scholar 

  17. Utamapanya S, Klabunde K J, Schlup J R. Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chemistry of Materials, 1991, 3(1): 175–181

    CAS  Google Scholar 

  18. Hsu J P, Nacu A. Preparation of submicron-sized Mg(OH)2 particles through precipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 262(1–3): 220–231

    Article  CAS  Google Scholar 

  19. Dong H B, Du Z P, Zhao Y H, Zhou D P. Preparation of surface modified nano-Mg(OH)2 via precipitation method. Powder Technology, 2010, 198(3): 325–329

    Article  CAS  Google Scholar 

  20. Lv J P, Qiu L Z, Qu B J. Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method. Journal of Crystal Growth, 2004, 267(3–4): 676–684

    Article  Google Scholar 

  21. Henrist C, Mathieu J P, Vogels C, Rulmont A, Cloots R. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. Journal of Crystal Growth, 2003, 249(1): 321–330

    Article  CAS  Google Scholar 

  22. Wu Q L, Xiang L, Jin Y. Influence of CaCl2 on the hydrothermal modification of Mg(OH)2. Powder Technology, 2006, 165(2): 100–104

    Article  CAS  Google Scholar 

  23. Yan C L, Xue D F, Zou L J, Yan X X, Wang W. Preparation of magnesium hydroxide nanoflowers. Journal of Crystal Growth, 2005, 282(3–4): 448–454

    Article  CAS  Google Scholar 

  24. Alamdari A, Rahimpour M R, Esfandiari N, Nourafkan E. Kinetics of magnesium hydroxide precipitation from sea bittern. Chemical Engineering and Processing: Process Intensification, 2008, 47(2): 215–221

    Article  CAS  Google Scholar 

  25. Söhnel O, Mareček J. Precipitation of magnesium hydroxide. Kristall und Technik, 1978, 13(3): 253–262

    Article  Google Scholar 

  26. Turek M, Gnot W. Precipitation of magnesium hydroxide from brine. Industrial & Engineering Chemistry Research, 1995, 34(1): 244–250

    Article  CAS  Google Scholar 

  27. Petric B, Petric N. Investigations of the rate of sedimentation of magnesium hydroxide obtained from sea water. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(3): 329–335

    Article  CAS  Google Scholar 

  28. Song X F, Sun S Y, Zhang D K, Wang J, Yu J G. Synthesis and characterization of magnesium hydroxide by batch reaction crystallization. Frontiers of Chemical Science and Engineering, 2011, 5(4): 1–6

    Article  CAS  Google Scholar 

  29. Dobrescu V, Păraşcu E, Pincovschi E. Continuous magnesium hydroxide precipitation. Crystal Research and Technology, 1987, 22(3): 327–338

    Article  CAS  Google Scholar 

  30. Wang P P, Li C H, Gong H Y, Wang H Q, Liu J R. Morphology control and growth mechanism of magnesium hydroxide nanoparticles via a simple wet precipitation method. Ceramics International, 2011, 37(8): 3365–3370

    Article  CAS  Google Scholar 

  31. Chen D H, Zhu L Y, Zhang H P, Xu K, Chen M C. Magnesium hydroxide nanoparticles with controlled morphologies via wet coprecipitation. Materials Chemistry and Physics, 2008, 109(2–3): 224–229

    Article  CAS  Google Scholar 

  32. Wójcik J A, Jones A G. Experimental investigation into dynamics and stability of continuous MSMPR agglomerative precipitation of CaCO3 crystals. Chemical Engineering Research & Design, 1997, 75(2): 113–118

    Article  Google Scholar 

  33. McCabe W L. Crystal growth in aqueous solutions1: II-Experimental. Industrial & Engineering Chemistry, 1929, 21(2): 112–119

    Article  CAS  Google Scholar 

  34. McCabe W L. Crystal growth in aqueous solutions1: I-Theory. Industrial & Engineering Chemistry, 1929, 21(1): 30–33

    Article  CAS  Google Scholar 

  35. Abegg C F, Stevens J D, Larson M A. Crystal size distributions in continuous crystallizers when growth rate is size dependent. AIChE Journal. American Institute of Chemical Engineers, 1968, 14(1): 118–122

    Article  CAS  Google Scholar 

  36. Canning T F, Randolph A D. Some aspects of crystallization theory: systems that violate McCabe’s delta L Law. AIChE Journal. American Institute of Chemical Engineers, 1967, 13(1): 5–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Tong, K., Sun, S. et al. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer. Front. Chem. Sci. Eng. 7, 130–138 (2013). https://doi.org/10.1007/s11705-013-1332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-013-1332-7

Keywords

Navigation