Skip to main content
Log in

Obligate Brood Parasites Show More Functionally Effective Innate Immune Responses: An Eco-immunological Hypothesis

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Western equine encephalomyelitis virus (Togaviridae, Alphavirus, WEEV).

  2. St. Louis encephalitis virus (Flaviviridae, Flavivirus, SLEV).

  3. WNV and WEEV.

  4. “Parasite” is used here in its widest sense, including viruses, bacteria, protists, and eukaryotes (Schulenburg et al. 2009).

  5. NADPH = reduced NADP (Nicotinamide adenine dinucleotide phosphate).

References

  • Adamo, S. A. (2004). How should behavioural ecologists interpret measurements of immunity? Animal Behaviour, 68, 1443–1449.

    Article  Google Scholar 

  • Anderem, A., & Underhill, D. M. (1997). Mechanism of phagocytosis in macrophages. Annual Review of Immunology, 17, 593–623.

    Article  Google Scholar 

  • Apanius, V., & Nisbet, I. C. T. (2006). Serum immunoglobulin G levels are positively related to reproductive performance in a long-lived seabird, the common tern (Sterna hirundo). Oecologia, 147(1), 12–23.

    Article  PubMed  Google Scholar 

  • Ardia, D. R. (2007). The ability to mount multiple immune responses simultaneously varies across the range of the tree swallow. Ecography, 30(1), 23–30.

    Google Scholar 

  • Blount, J. D., Houston, D. C., Moller, A. P., & Wright, J. (2003). Do individual branches of immune defence correlate? A comparative case study of scavenging and non-scavenging birds. Oikos, 102(2), 340–350.

    Article  Google Scholar 

  • Boyen, F., Pasmans, F., Van Immerseel, F., Donne, E., Morgan, E., Ducatelle, R., et al. (2009). Porcine in vitro and in vivo models to assess the virulence of Salmonella enterica serovar Typhimurium for pigs. Laboratory Animals, 43(1), 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Buehler, D. M., Tieleman, B. I., & Piersma, T. (2009). Bottlenecks, budgets and immunity: The possibility of immune strategies in long distance migrant birds. Integrative and Comparative Biology, 49, E22–E22.

    Google Scholar 

  • Colwell, M. A. (1986). Intraspecific brood parasitism in three species of prairie-breeding shorebirds. Wilson Bulletin, 93(3), 473–475.

    Google Scholar 

  • Davies, N. B. (2000). Cuckoos, cowbirds, and other cheats (p. 310). London: Poyser.

    Google Scholar 

  • Demas, G. E., & Nelson, R. J. (Eds.). (2012). Ecoimmunology. Oxford: Oxford University Press.

    Google Scholar 

  • Demas, G. E., Zysling, D. A., Beechler, B. R., Muehlenbein, M. P., & French, S. S. (2011). Beyond phytohaemagglutinin: Assessing vertebrate immune function across ecological contexts. Journal of Animal Ecology, 80, 710–730.

    Article  PubMed  Google Scholar 

  • Dolbeer, R. A. (2003). Population dynamics of the most abundant bird in North America: The red-winged blackbird. Fort Collins, CO: The Wildlife Society.

    Google Scholar 

  • Ehrlich, P. R., Dobkin, D. S., & Wheye, D. (1988). The Birder’s handbook: A field guide to the natural history of North American birds. New York: Simon and Schuster.

    Google Scholar 

  • Ellison, K., & Lowther, P. E. (2009). Bronzed Cowbird (Molothrus aeneus). In A. Poole (Ed.), The Birds of North America Online. Ithaca: Cornell Lab of Ornithology.

    Google Scholar 

  • Ferro, P. J., Swaggerty, C. L., He, H., Rothwell, L., Kaiser, P., & Kogut, M. H. (2005). Recombinant chicken IL-6 does not activate heterophils isolated from day-old chickens in vitro. Developmental and Comparative Immunology, 29(4), 375–383.

    Article  PubMed  CAS  Google Scholar 

  • Friedmann, H. (1929). The cowbirds: A study in the biology of social parasitism. Baltimore: Charles C. Thomas.

    Google Scholar 

  • Friedmann, H., Kiff, L. F., & Rothstein S. I. (1977). A further contribution to knowledge of the host relations of the parasitic cowbirds (pp. 1–75). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Godoy-Vitorino, F., Ley, R. E., Gao, Z., Pei, Z. H., Ortiz-Zuazaga, H., Pericchi, L. R., et al. (2008). Bacterial community in the crop of the hoatzin, a neotropical folivorous flying bird. Applied and Environmental Microbiology, 74(19), 5905–5912.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, D. C., & Fleischer, R. C. (1995). DNA fingerprint similarity between female and juvenile brown-headed cowbirds trapped together. Animal Behaviour, 49(6), 1577–1580.

    Article  Google Scholar 

  • Hahn, D. C., Igl, L. D., Burnett, J., & Erf, G. (2012). Evidence of parasite-mediated selection favoring evolution of more effective immune defenses: More immune constituents in eggs of avian brood parasites. Integrative and Comparative Biology, 52(Supplement 1), E71.

    Google Scholar 

  • Hahn, D. C., Price, R. D., & Osenton, P. C. (2000). Use of lice to identify cowbird hosts. Auk, 117(4), 943–951.

    Google Scholar 

  • Hahn, D. C., & Reisen, W. K. (2011). Heightened exposure to parasites favors the evolution of immunity in brood parasitic cowbirds. Evolutionary Biology, 38(2), 214–224.

    Article  Google Scholar 

  • Hahn, D. C., Sedgwick, J. A., Painter, I., & Casna, N. J. (1999). The spatial and genetic basis of host selection. In M. L. Morrison, L. S. Hall, S. K. Robinson, S. I. Rothstein, D. C. Hahn, & T. D. Rich (Eds.), Research and management of the brown-headed Cowbird in Western Landscapes (pp. 204–217). Lawrence, KS.: Cooper Ornithological Society.

    Google Scholar 

  • Hahn, D. C., & Smith, G. W. (2011). Life history trade-offs between longevity and immunity in the parasitic brown-headed Cowbird? Open Evolution Journal, 5, 8–13.

    Article  Google Scholar 

  • Haussmann, M. F., Winkler, D. W., Huntington, C. E., Vleck, D., Sanneman, C. E., Hanley, D., et al. (2005). Cell-mediated immunosenescence in birds. Oecologia, 145(2), 270–275.

    Article  PubMed  Google Scholar 

  • Hawley, D. M., & Altizer, S. M. (2011). Disease ecology meets ecological immunology: Understanding the links between organismal immunity and infection dynamics in natural populations. Functional Ecology, 25, 48–60.

    Article  Google Scholar 

  • Hayden, T. J., Tazik, D. J., Melton, R. H., & Cornelius, J. D. (2000). Cowbird control program at Fort Hood, Texas: Lessons for mitigation of Cowbird parasitism on a landscape scale. In J. N. M. Smith, T. L. Cook, S. I. Rothstein, S. K. Robinson, & S. G. Sealy (Eds.), Ecology and management of Cowbirds and their hosts (pp. 357–370). Austin: University of Texas Press.

    Google Scholar 

  • He, H., Crippen, T. L., Farnell, M. B., & Kogut, M. H. (2003). Identification of CpG oligodeoxynucleotide motifs that stimulate nitric oxide and cytokine production in avian macrophage and peripheral blood mononuclear cells. Developmental and Comparative Immunology, 27, 651–657.

    Article  Google Scholar 

  • Hofmeister, E. K. (2011). West Nile virus: North American experience. Integrative Zoology, 6(3), 279–289.

    Article  PubMed  Google Scholar 

  • Horrocks, N. P. C., Hegemann, A., Matson, K., Hine K, Jaquier S, Shobrak M, et al. (2012). Immune indexes of larks from desert and temperate regions show weak associations with life history but stronger links to environmental variation in microbial abundance. Physiological and Biochemical Zoology, 85(5), 504–515.

    Article  PubMed  Google Scholar 

  • Hume, D. A. (2006). The mononuclear phagocyte system. Current Opinion in Immunology, 18, 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Janeway, C. A., & Medzhitov, R. (2002). Innate immune recognition. Annual Review of Immunology, 20, 197–216.

    Article  PubMed  CAS  Google Scholar 

  • Janeway, C. A., Travers, P., Walport, M., & Schlomchik, M. (2001). Immunobiology. New York: Garland Publishing.

    Google Scholar 

  • Jaramillo, A., & Burke, P. (1999). New world blackbirds: The Icterids (p. 431). Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Joyner, D. E. (1976). Effects of interspecific nest parasitism by redheads and ruddy ducks. The Journal of Wildlife Management, 40(1), 33–38.

    Article  Google Scholar 

  • Kilpatrick, A. M., LaDeau, S. L., & Marra, P. P. (2007). Ecology of West Nile virus transmission and its impact on birds in the western hemisphere. Auk, 124(4), 1121–1136.

    Article  Google Scholar 

  • Kogut, M. H., Genovese, K. J., He, H., Li, M. A., & Jiang, Y. W. (2007). The effects of the BT/TAMUS 2032 cationic peptides on innate immunity and susceptibility of young chickens to extraintestinal Salmonella enterica serovar Enteritidis infection. International Immunopharmacology, 7(7), 912–919.

    Article  PubMed  CAS  Google Scholar 

  • Kogut, M. H., Genovese, K. J., & Lowry, V. K. (2001). Differential activation of signal transduction pathways mediating phagocytosis, oxidative burst, and degranulation by chicken heterophils in response to stimulation with opsonised Salmonella enteritidis. Inflammation, 25, 7–15.

    Article  PubMed  CAS  Google Scholar 

  • Komar, N., Langevin, S., Hinten, S., Nemeth, N., Edwards, E., Hettler, D., et al. (2003). Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerging Infectious Diseases, 9(3), 311–322.

    Article  PubMed  Google Scholar 

  • Kostecke, R. M., Ellison, K., & Summers, S. G. (2004). Continued range expansion by bronzed cowbirds in the southwestern United States. Southwestern Naturalist, 49(4), 487–492.

    Article  Google Scholar 

  • Krakauer, A. H., & Kimball, R. T. (2009). Interspecific brood parasitism in galliform birds. Ibis, 151(2), 373–381.

    Article  Google Scholar 

  • Kyle, P., & Kyle, G. (1990). An evaluation of the role of microbial flora in the salivary transfer technique for hand-rearing Chimney Swifts. In: Ludwig, D. R. (Ed.), Wildlife rehabilitation: Selected papers presented at the eighth symposium of the national wildlife rehabilitators Association. Ithaca, New York, March 21–25; Ithaca, NY, pp. 65–72.

  • Lanyon, S. M., & Omland, K. E. (1999). A molecular phylogeny of the blackbirds (Icteridae): Five lineages revealed by cytochrome-b sequence data. Auk, 116(3), 629–639.

    Article  Google Scholar 

  • Lee, K. A., & Klasing, K. C. (2004). A role for immunology in invasion biology. Trends in Ecology & Evolution, 19(10), 523–529.

    Article  Google Scholar 

  • Lee, K. A., Martin, L. B., Hasselquist, D., Ricklefs, R. E., & Wikelski, M. (2006). Contrasting adaptive immune defenses and blood parasite prevalence in closely related Passer sparrows. Oecologia, 150(3), 383–392.

    Article  PubMed  Google Scholar 

  • Lee, K. A., Martin, L. B., & Wikelski, M. C. (2005). Responding to inflammatory challenges is less costly for a successful avian invader, the house sparrow (Passer domesticus), than its less-invasive congener. Oecologia, 145(2), 244–251.

    Article  PubMed  Google Scholar 

  • Lee, K. A., Wikelski, M., Robinson, W. D., Robinson, T. R., & Klasing, K. C. (2008). Constitutive immune defences correlate with life-history variables in tropical birds. Journal of Animal Ecology, 77(2), 356–363.

    Article  PubMed  CAS  Google Scholar 

  • Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., et al. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647–1651.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, K. M., Foufopoulos, J., Parn, H., & Wikelski, M. (2004). Immunological investments reflect parasite abundance in island populations of Darwin’s finches. Proceedings of the Royal Society of London Series B-Biological Sciences, 271(1547), 1513–1519.

    Article  Google Scholar 

  • Lowther, P. E. (1993). Brown-headed Cowbird (Molothrus ater). In Poole, A. (Ed.), The Birds of North America Online: http://bna.birds.cornell.edu/bna/species/047. Ithaca: Cornell Lab of Ornithology.

  • Matson, K. D., Cohen, A. A., Klasing, K. C., Ricklefs, R. E., & Scheuerlein, A. (2006). No simple answers for ecological immunology: Relationships among immune indices at the individual level break down at the species level in waterfowl. Proceedings of the Royal Society B-Biological Sciences, 273(1588), 815–822.

    Article  Google Scholar 

  • Mendes, L., Piersma, T., Hasselquist, D., Matson, K. D., & Ricklefs, R. E. (2006). Variation in the innate and acquired arms of the immune system among five shorebird species. Journal of Experimental Biology, 209(2), 284–291.

    Article  PubMed  Google Scholar 

  • Merrill, L., O’Loghlen, A. L., Wingfield, J. C., & Rothstein, S. I. (2013). Immune function in an avian brood parasite and its nonparasitic relative. Physiological and Biochemical Zoology, 86(1), 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Millet, S., Bennett, J., Lee, K. A., Hau, M., & Klasing, K. C. (2007). Quantifying and comparing constitutive immunity across avian species. Developmental and Comparative Immunology, 31(2), 188–201.

    Article  PubMed  CAS  Google Scholar 

  • Moller, A. P. (1997). Parasitism and the evolution of host life history. In D. H. Clayton & J. Moore (Eds.), Host-parasite evolution: General principles and avian models (pp. 105–127). Oxford: Oxford University Press.

    Google Scholar 

  • Ortega, C. (1998). Cowbirds and other Brood Parasites. Tucson, AZ: University of Arizona Press.

    Google Scholar 

  • Papp, Z., & Smits, J. E. G. (2007). Validation and novel applications of the whole-blood chemiluminescence assay of innate immune function in wild vertebrates and domestic chickens. Journal of Wildlife Diseases, 43(4), 623–634.

    Article  PubMed  CAS  Google Scholar 

  • Piersma, T. (1997). Do global patterns of habitat use and migration strategics co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos, 80(3), 623–631.

    Article  Google Scholar 

  • Rausch, R. L. (1983). Biology of avian parasites: Helminths. In D. Farner & J. King (Eds.), Avian biology (pp. 367–442). New York: Academic Press.

    Chapter  Google Scholar 

  • Reisen, W. K., Chiles, R. E., Martinez, V. M., Fang, Y., & Green, E. N. (2003). Experimental infection of California birds with western equine encephalomyelitis and St. Louis encephalitis viruses. Journal of Medical Entomology, 40, 968–982.

    Article  PubMed  CAS  Google Scholar 

  • Reisen, W. K., & Hahn, D. C. (2007). Comparison of immune responses of brown-headed cowbird and related blackbirds to West Nile and other mosquito-borne encephalitis viruses. Journal of Wildlife Diseases, 43(3), 439–449.

    Article  PubMed  Google Scholar 

  • Rothstein, S. I., & Robinson, S. K. (1998). The evolution and ecology of avian brood parasitism: An overview. In S. I. Rothstein & S. K. Robinson (Eds.), Parasitic birds and their hosts: Studies in coevolution (pp. 3–7). New York: Oxford University Press.

    Google Scholar 

  • Sauer, J. R., Hines, J. E., & Fallon, J. (2005). The North American breeding bird survey, results and analysis, 1966-2005, v. 6.2.2006. Laurel, MD: USGS Patuxent Wildlife Research Center.

    Google Scholar 

  • Schmid-Hempel, P. (2003). Variation in immune defence as a question of evolutionary ecology. Proceedings of the Royal Society of London Series B-Biological Sciences, 270(1513), 357–366.

    Article  Google Scholar 

  • Schmid-Hempel, P. (2011). Evolutionary parasitology: The integrated study of infections, immunology, ecology, and genetics. Oxford: Oxford University Press.

    Google Scholar 

  • Schulenburg, H., Kurtz, J., Moret, Y., & Siva-Jothy, M. T. (2009). Introduction: Ecological immunology. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 364(1513), 3–14.

    Article  PubMed  Google Scholar 

  • Scott, D. M., & Ankney, C. D. (1983). The laying cycle of brown-headed cowbirds: Passerine chickens? Auk, 100, 583–593.

    Google Scholar 

  • Semela, B., & Sherman, P. W. (2001). Intraspecific parasitism and nest-site competition in wood ducks. Animal Behaviour, 61(4), 787–803.

    Article  Google Scholar 

  • Serbina, N. V., Jia, T., Hohl, T. M., & Pamer, E. G. (2008). Monocyte-mediated defense against microbial pathogens. Annual Review of Immunology, 26, 421–452.

    Article  PubMed  CAS  Google Scholar 

  • Sibley, D. A. (2000). The Sibley guide to birds (p. 544). New York: Alfred A. Knopf.

    Google Scholar 

  • Sild, E., & Hõrak, P. (2010). Assessment of oxidative burst in avian whole blood samples: Validation and application of a chemiluminescence method based on Pholasin. Behavioral Ecology and Sociobiology, 64(12), 2065–2076.

    Article  Google Scholar 

  • Swaggerty, C. L., Pevzner, I. Y., Ferro, P. J., Crippen, T. L., & Kogut, M. H. (2003). Association between in vitro heterophil function and the feathering gene in commercial broiler chickens. Avian Pathology, 32(5), 483–488.

    Article  PubMed  Google Scholar 

  • Tella, J. L., Scheuerlein, A., & Ricklefs, R. E. (2002). Is cell-mediated immunity related to the evolution of life-history strategies in birds? Proceedings of the Royal Society of London Series B-Biological Sciences, 269(1495), 1059–1066.

    Article  Google Scholar 

  • Tukel, C., Raffatellu, M., Chessa, D., Wilson, R. P., Akcelik, M., & Baumler, A. J. (2006). Neutrophil influx during non-typhoidal salmonellosis: Who is in the driver’s seat? FEMS Immunology and Medical Microbiology, 46(3), 320–329.

    Article  PubMed  CAS  Google Scholar 

  • Yasukawa, K, & Searcy, W. A. (Eds.). (1995). Red-winged blackbird (Agelaius phoeniceus). http://bna.birds.cornell.edu/bna/species/184ed. Ithaca, NY: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online.

Download references

Acknowledgments

This work was supported in part by USGS—Patuxent Wildlife Research Center and by USDA—ARS-Southern Plains Agricultural Research Center. We thank The Nature Conservancy of Texas and Fort Hood for assistance. Use of trade, product, or firm names does not imply endorsement by the US Government. We appreciate helpful comments on the manuscript from E. Hofmeister and 2 anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Caldwell Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, D.C., Summers, S.G., Genovese, K.J. et al. Obligate Brood Parasites Show More Functionally Effective Innate Immune Responses: An Eco-immunological Hypothesis. Evol Biol 40, 554–561 (2013). https://doi.org/10.1007/s11692-013-9231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-013-9231-x

Keywords

Navigation