Skip to main content
Log in

Evolution of Sexual Dimorphism in the Number of Tail Vertebrae in Salamanders: Comparing Multiple Hypotheses

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The evolution of sexual dimorphism is an important topic of evolutionary biology, but few studies have investigated the determinants of sexual dimorphism over broad phylogenetic scales. The number of vertebrae is a discrete character influencing multiple traits of individuals, and is particularly suitable to analyze processes determining morphological variation. We evaluated the support of multiple hypotheses concerning evolutionary processes that may cause sexual dimorphism in the number of caudal vertebrae in Urodela (tailed amphibians). We obtained counts of caudal vertebrae from >2,000 individuals representing 27 species of salamanders and newts from Europe and the Near East, and integrated these data with a molecular phylogeny and multiple information on species natural history. Per each species, we estimated sexual dimorphism in caudal vertebrae number. We then used phylogenetic least squares to relate this sexual dimorphism to natural history features (courtship complexity, body size dimorphism, sexual ornamentation, aquatic phenology) representing alternative hypotheses on processes that may explain sexual dimorphism. In 18 % of species, males had significantly more caudal vertebrae than females, while in no species did females have significantly more caudal vertebrae. Dimorphism was highest in species where males have more complex courtship behaviours, while the support of other candidate mechanisms was weak. In many species, males use the tail during courtship displays, and sexual selection probably favours tails with more vertebrae. Dimorphism for the number of tail vertebrae was unrelated to other forms of dimorphism, such as sexual ornamentation or body size differences. Multiple sexually dimorphic features may evolve independently because of the interplay between sexual selection, fecundity and natural selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C. E., Zwaan, B. J., & Brakefield, P. M. (2011). Evolution of sexual dimorphism in the Lepidoptera. Annual Review of Entomology, 56, 445–464.

    Article  PubMed  CAS  Google Scholar 

  • Arakelyan, M. S., Dalielyan, F. D., Corti, C., Sindaco, R., & Leviton, A. E. (2011). Herpetofauna of Armenia and Nagorno-Karabakh. Ithaca, NY: SSAR.

    Google Scholar 

  • Blanckenhorn, W. U. (2005). Behavioral causes and consequences of sexual size dimorphism. Ethology, 111, 977–1016.

    Article  Google Scholar 

  • Blanckenhorn, W. U., Stillwell, R. C., Young, K. A., Fox, C. W., & Ashton, K. G. (2006). When Rensch meets Bergmann: Does sexual size dimorphism change systematically with latitude? Evolution, 60, 2004–2011.

    PubMed  Google Scholar 

  • Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology withy R. New York: Springer.

    Book  Google Scholar 

  • Bovero, S., Sotgiu, G., Castellano, S., & Giacoma, C. (2003). Age and sexual dimorphism in a population of Euproctus platycephalus (Caudata: Salamandridae) from Sardinia. Copeia, 2003, 149–154.

    Article  Google Scholar 

  • Carranza, S., Romano, A., Arnold, E. N., & Sotgiu, G. (2008). Biogeography and evolution of European cave salamanders, Hydromantes (Urodela: Plethodontidae), inferred from mtDNA sequences. Journal of Biogeography, 35, 724–738.

    Article  Google Scholar 

  • Ceballos, C., Adams, D., Iverson, J., & Valenzuela, N. (2012). Phylogenetic patterns of sexual size dimorphism in Turtles and their implications for Rensch’s rule. Evolutionary Biology. doi:10.1007/s11692-012-9199-y.

  • Dale, J., Dunn, P. O., Figuerola, J., Lislevand, T., Székely, T., & Whittingham, L. A. (2007). Sexual selection explains Rensch’s rule of allometry for sexual size dimorphism. Proceedings of the Royal Society B: Biological Sciences, 274, 2971–2979.

    Article  PubMed  Google Scholar 

  • Del Re, A. C. (2012). compute.es: Compute Effect Sizes. R package version 0.2.1: http://CRAN.R-project.org/package=compute.es.

  • Ficetola, G. F., Scali, S., Denoël, M., Montinaro, G., Vukov, T. D., Zuffi, M. A. L., et al. (2010). Ecogeographical variation of body size in the newt Triturus carnifex: Comparing the hypotheses using an information-theoretic approach. Global Ecology and Biogeography, 19, 485–495.

    Google Scholar 

  • Freckleton, R. P., Cooper, N., & Jetz, W. (2011). Comparative methods as a statistical fix: The dangers of ignoring an evolutionary model. American Naturalist, 178(1), E10–E17.

    Article  PubMed  Google Scholar 

  • Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. American Naturalist, 160, 712–726.

    Article  PubMed  CAS  Google Scholar 

  • Frydlova, P., & Frynta, D. (2010). A test of Rensch’s rule in varanid lizards. Biological Journal of the Linnean Society, 100, 293–306.

    Article  Google Scholar 

  • Griffiths, R. A. (1995). Newts and salamanders of Europe. London: Poyser Natural History.

    Google Scholar 

  • Grossenbacher, K., & Thiesmeier, B. (Eds.). (2003). Handbuch der Reptilien und Amphibien Europas. Bd. 4/IIA: Schwanzlurche (Urodela) IIA. Wiesbaden: AULA-Verlag.

    Google Scholar 

  • Gvozdik, L., & Van Damme, R. (2006). Triturus newts defy the running-swimming dilemma. Evolution, 60, 2110–2121.

    Article  PubMed  Google Scholar 

  • Hartung, J., Knapp, G., & Sinha, B. K. (2008). Statistical meta-analysis with applications. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Itazawa, Y. (1959). Influence of the environment on the number of vertebrae in fish. Nature, 183, 1408–1409.

    Article  PubMed  CAS  Google Scholar 

  • Ivanovic, A., Sotiropoulos, K., Furtula, M., Dzukic, G., & Kalezic, M. L. (2008). Sexual size and shape evolution in European newts (Amphibia: Caudata: Salamandridae) on the Balkan Peninsula. Journal of Zoological Systematics and Evolutionary Research, 46, 381–387.

    Article  Google Scholar 

  • Lanza, B., Andreone, F., Bologna, M. A., Corti, C., & Razzetti, E. (Eds.). (2007). Fauna d’Italia, vol. XLII, Amphibia. Bologna: Calderini.

    Google Scholar 

  • Lanza, B., Arntzen, J. W., & Gentile, E. (2009). Vertebral numbers in the Caudata of the Western Palaeartic (Amphibia). Atti del Museo Civico di Storia Naturale di Trieste, 54, 3–114.

    Google Scholar 

  • Lanza, B., Pastorelli, C., Laghi, P., & Cimmaruta, R. (2006). A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti del Museo Civico di Storia Naturale di Trieste, 52(Suppl), 5–135.

    Google Scholar 

  • Lovich, J. E., & Gibbons, J. W. (1992). A review of techniques for quantifying sexual size dimorphism. Growth, Development, and Aging, 56, 269–281.

    PubMed  CAS  Google Scholar 

  • Lukacs, P. M., Thompson, W. L., Kendall, W. L., Gould, W. R., Doherty, P. F., Burnham, K. P., et al. (2007). Concerns regarding a call for pluralism of information theory and hypothesis testing. Journal of Applied Ecology, 44, 456–460.

    Article  Google Scholar 

  • Malmgren, J. C., & Thollesson, M. (1999). Sexual size and shape dimorphism in two species of newts, Triturus cristatus and T. vulgaris (Caudata: Salamandridae). Journal of Zoology, 249, 127–136.

    Article  Google Scholar 

  • Martins, E. P., & Hansen, T. F. (1997). Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist, 149, 646–667.

    Article  Google Scholar 

  • Mayr, E. (1972). Sexual selection and natural selection. In B. Campbell (Ed.), Sexual selection and the descent of man 1871–1971 (pp. 136–208). Chicago: Aldine.

  • McDowall, R. M. (2008). Jordan’s and other ecogeographical rules, and the vertebral number in fishes. Journal of Biogeography, 35, 501–508.

    Article  Google Scholar 

  • McIntire, E. J. B., & Fajardo, A. (2009). Beyond description: The active and effective way to infer processes from spatial patterns. Ecology, 90, 46–56.

    Article  PubMed  Google Scholar 

  • Nöllert, A., & Nöllert, C. (1992). Die Amphibien Europas. Stuttgart: Kosmos.

    Google Scholar 

  • Orme, D., Freckleton, R. P., Thomas, G. H., Petzoldt, T., Fritz, S., Isaac, N., et al. (2012). caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 0.5: http://CRAN.R-project.org/package=caper.

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, V. S., & Hews, D. K. (2010). The evolutionary decoupling of behavioral and color cues in a multicomponent signal in two Sceloporus lizards. Ethology, 116, 509–516.

    Article  Google Scholar 

  • R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Raffaelli, J. (2007). Les Urodèles du monde. France: Penclen.

    Google Scholar 

  • Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, 43, 223–225.

    Article  Google Scholar 

  • Richards, S. A., Whittingham, M. J., & Stephens, P. A. (2011). Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behavioral Ecology and Sociobiology, 65, 77–89.

    Article  Google Scholar 

  • Shine, R. (2000). Vertebral numbers in male and female snakes: The roles of natural, sexual and fecundity selection. Journal of Evolutionary Biology, 13, 455–465.

    Article  Google Scholar 

  • Speybroeck, J., Beukema, W., & Crochet, P. A. (2010). A tentative species list of the European herpetofauna (Amphibia and Reptilia)—An update. Zootaxa, 2492, 1–27.

    Google Scholar 

  • Stephens, P. R., & Wiens, J. J. (2009). Evolution of sexual size dimorphism in Emydid turtles: Ecological dimorphism, Rensch’s rule, and sympatric divergence. Evolution, 63, 910–925.

    Article  PubMed  Google Scholar 

  • Symonds, M. R. E., & Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology, 65(1), 13–21.

    Article  Google Scholar 

  • van der Meijden, A., Chiari, Y., Mucedda, M., Carranza, S., Corti, C., & Veith, M. (2009). Phylogenetic relationships of Sardinian cave salamanders, genus Hydromantes, based on mitochondrial and nuclear DNA sequence data. Molecular Phylogenetics and Evolution, 51, 399–404.

    Article  PubMed  Google Scholar 

  • Veith, M. (1994). Morphological, molecular and life history variation in Salamandra salamandra (L.). Mertensiella, 4, 355–397.

    Google Scholar 

  • Wielstra, B., & Arntzen, J. W. (2011). Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences. BMC Evolutionary Biology, 11, 162.

    Article  PubMed  Google Scholar 

  • Wiens, J. J. (2000). Decoupled evolution of display morphology and display behaviour in phrynosomatid lizards. Biological Journal of the Linnean Society, 70, 597–612.

    Article  Google Scholar 

  • Wiens, J. J., Sparreboom, M., & Arntzen, J. W. (2011). Crest evolution in newts: Implications for reconstruction methods, sexual selection, phenotypic plasticity and the origin of novelties. Journal of Evolutionary Biology, 24, 2073–2086.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., & Lu, X. (2012). Sexual size dimorphism in Anurans: Ontogenetic determination revealed by an across-species comparison. Evolutionary Biology. doi:10.1007/s11692-012-9187-2.

  • Zhang, P., & Wake, D. B. (2009). Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 53, 492–508.

    Article  PubMed  CAS  Google Scholar 

  • Zug, G. R., Vitt, L. J., & Caldwell, J. P. (2001). Herpetology. San Diego: Academic Press.

    Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for constructive comments on early versions of the manuscript. GFF was funded by a scholarship of Univ. Milano-Bicocca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gentile Francesco Ficetola.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ficetola, G.F., Bonardi, A., Colleoni, E. et al. Evolution of Sexual Dimorphism in the Number of Tail Vertebrae in Salamanders: Comparing Multiple Hypotheses. Evol Biol 40, 220–227 (2013). https://doi.org/10.1007/s11692-012-9203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9203-6

Keywords

Navigation