Skip to main content
Log in

Music supported therapy promotes motor plasticity in individuals with chronic stroke

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Novel rehabilitation interventions have improved motor recovery by induction of neural plasticity in individuals with stroke. Of these, Music-supported therapy (MST) is based on music training designed to restore motor deficits. Music training requires multimodal processing, involving the integration and co-operation of visual, motor, auditory, affective and cognitive systems. The main objective of this study was to assess, in a group of 20 individuals suffering from chronic stroke, the motor, cognitive, emotional and neuroplastic effects of MST. Using functional magnetic resonance imaging (fMRI) we observed a clear restitution of both activity and connectivity among auditory-motor regions of the affected hemisphere. Importantly, no differences were observed in this functional network in a healthy control group, ruling out possible confounds such as repeated imaging testing. Moreover, this increase in activity and connectivity between auditory and motor regions was accompanied by a functional improvement of the paretic hand. The present results confirm MST as a viable intervention to improve motor function in chronic stroke individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amengual, J. L., Rojo, N., de Las Veciana, H. M., Marco-Pallares, J., Grau-Sanchez, J., Schneider, S., et al. (2013). Sensorimotor plasticity after music-supported therapy in chronic stroke patients revealed by transcranial magnetic stimulation. PLoS.One, 8, e61883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen, S. M., Rapcsak, S. Z., & Beeson, P. M. (2010). Cost function masking during normalization of brains with focal lesions: still a necessity? NeuroImage, 53, 78–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26, 839–851.

    Article  PubMed  Google Scholar 

  • Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, et al. (2006). Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. NeuroImage, 30, 917–926.

    Article  PubMed  Google Scholar 

  • Barber, A. D., Srinivasan, P., Joel, S. E., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2012). Motor “Dexterity”?: evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children. Cerebral Cortex, 22, 51–59.

    Article  PubMed  Google Scholar 

  • Bates, J. F., & Goldman-Rakic, P. S. (1993). Prefrontal connections of medial motor areas in the rhesus monkey. Journal of Comparative Neurology, 336, 211–228.

    Article  CAS  PubMed  Google Scholar 

  • Baumann, S., Koeneke, S., Schmidt, C. F., Meyer, M., Lutz, K., & Jancke, L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65–78.

    Article  CAS  PubMed  Google Scholar 

  • Bernardi, N.F., Cioffi, M.C., Ronchi, R., Maravita, A., Bricolo, E., Zigiotto, L., et al., (2015). Improving left spatial neglect through music scale playing. Journal of Neuropsychology.

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Boyle, M. E., & Greer, R. D. (1983). Operant procedures and the comatose patient. Journal of Applied Behavior Analysis, 16, 3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradt, J., Magee, W.L., Dileo, C., Wheeler, B.L., and McGilloway, E. (2010). Music therapy for acquired brain injury. Cochrane Database of Systematic Reviews, CD006787.

  • Brett, M., Leff, A. P., Rorden, C., & Ashburner, J. (2001). Spatial normalization of brain images with focal lesions using cost function masking. NeuroImage, 14, 486–500.

    Article  CAS  PubMed  Google Scholar 

  • Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: from synapses to maps. Annual Review of Neuroscience, 21, 149–186.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L. L., & Wise, S. P. (1996). Evolution of directional preferences in the supplementary eye field during acquisition of conditional oculomotor associations. Journal of Neuroscience, 16, 3067–3081.

    CAS  PubMed  Google Scholar 

  • Cheng, B., Forkert, N. D., Zavaglia, M., Hilgetag, C. C., Golsari, A., Siemonsen, S., et al. (2014). Influence of stroke infarct location on functional outcome measured by the modified rankin scale. Stroke, 45, 1695–1702.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, N. S. (1992). The effect of singing instruction on the speech production of neurologically impaired persons. Journal of Music Therapy, 29, 87–102.

    Article  Google Scholar 

  • Cohen, N. S., & Ford, J. (1995). The effect of musical cues on the nonpurposive speech of persons with aphasia. Journal of Music Therapy, 32, 46–57.

    Article  Google Scholar 

  • Cramer, S. C. (2008). Repairing the human brain after stroke: I. mechanisms of spontaneous recovery. Annals of Neurology, 63, 272–287.

    Article  PubMed  Google Scholar 

  • Crinion, J., Ashburner, J., Leff, A., Brett, M., Price, C., & Friston, K. (2007). Spatial normalization of lesioned brains: performance evaluation and impact on fMRI analyses. NeuroImage, 37, 866–875.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dancause, N., Barbay, S., Frost, S. B., Plautz, E. J., Chen, D., Zoubina, et al. (2005). Extensive cortical rewiring after brain injury. Journal of Neuroscience, 25, 10167–10179.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y., Dobkin, B. H., Cen, S. Y., Wu, A. D., & Winstein, C. J. (2006). Motor cortex activation during treatment may predict therapeutic gains in paretic hand function after stroke. Stroke, 37, 1552–1555.

    Article  PubMed  Google Scholar 

  • Dum, R. P., & Strick, P. L. (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. Journal of Neuroscience, 11, 667–689.

    CAS  PubMed  Google Scholar 

  • Feigin, V. L., Forouzanfar, M. H., Krishnamurthi, R., Mensah, G. A., Connor, M., Bennett, et al. (2014). Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet, 383, 245–254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Forsblom, A., Laitinen, S., Sarkamo, T., & Tervaniemi, M. (2009). Therapeutic role of music listening in stroke rehabilitation. Annals of the New York Academy of Sciences, 1169, 426–430.

    Article  PubMed  Google Scholar 

  • Francois, C., Grau-Sanchez, J., Duarte, E., & Rodriguez-Fornells, A. (2015). Musical training as an alternative and effective method for neuro-education and neuro-rehabilitation. Frontiers in Psychology, 6, 475.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connectivity, 1, 13–36.

    Article  PubMed  Google Scholar 

  • Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23, 9240–9245.

    CAS  PubMed  Google Scholar 

  • Gatti, R., Tettamanti, A., Lambiase, S., Rossi, P., & Comola, M. (2014). Improving hand functional use in subjects with multiple sclerosis using a musical keyboard: a randomized controlled trial. Physiotheraphy Research International.

  • Gaynor, E. J., Geoghegan, S. E., & O’Neill, D. (2014). Ageism in stroke rehabilitation studies. Age and Ageing, 43, 429–431.

    Article  PubMed  Google Scholar 

  • Grau-Sanchez, J., Amengual, J. L., Rojo, N., Veciana de Las, H. M., Montero, J., Rubio, F., et al. (2013). Plasticity in the sensorimotor cortex induced by music-supported therapy in stroke patients: a TMS study. Frontiers in Human Neuroscience, 7, 494.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grefkes, C., & Fink, G. R. (2011). Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain, 134, 1264–1276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herdener, M., Esposito, F., di Salle, F., Boller, C., Hilti, C. C., Habermeyer, B., Scheffler, I., et al. (2010). Musical training induces functional plasticity in human hippocampus. Journal of Neuroscience, 30, 1377–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hikosaka, O., Sakai, K., Miyauchi, S., Takino, R., Sasaki, Y., & Putz, B. (1996). Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. Journal of Neurophysiology, 76, 617–621.

    CAS  PubMed  Google Scholar 

  • Hurt, C. P., Rice, R. R., McIntosh, G. C., & Thaut, M. H. (1998). Rhythmic auditory stimulation in gait training for patients with traumatic brain injury. Journal of Music Therapy, 35, 228–241.

    Article  PubMed  Google Scholar 

  • Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., et al. (2009). Musical training shapes structural brain development. Journal of Neuroscience, 29, 3019–3025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen-Berg, H. (2012). The future of functionally-related structural change assessment. NeuroImage, 62, 1293–1298.

    Article  PubMed  Google Scholar 

  • Johansen-Berg, H., Dawes, H., Guy, C., Smith, S. M., Wade, D. T., & Matthews, P. M. (2002). Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain, 125, 2731–2742.

    Article  PubMed  Google Scholar 

  • Kantak, S. S., Stinear, J. W., Buch, E. R., & Cohen, L. G. (2012). Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabilitation and Neural Repair, 26, 282–292.

    Article  PubMed  Google Scholar 

  • Kitago, T., Liang, J., Huang, V. S., Hayes, S., Simon, P., & Tenteromano. (2013). Improvement after constraint-induced movement therapy: recovery of normal motor control or task-specific compensation? Neurorehabilitation and Neural Repair, 27, 99–109.

    Article  PubMed  Google Scholar 

  • Krakauer, J. W., Carmichael, S. T., Corbett, D., & Wittenberg, G. F. (2012). Getting neurorehabilitation right: what can be learned from animal models. Neurorehabilitation and Neural Repair, 26, 923–931.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27, 308–314.

    Article  CAS  PubMed  Google Scholar 

  • Langhorne, P., Bernhardt, J., & Kwakkel, G. (2011). Stroke rehabilitation. Lancet, 377, 1693–1702.

    Article  PubMed  Google Scholar 

  • Lieberman, M. D., & Cunningham, W. A. (2009). Type I and Type II error concerns in fMRI research: re-balancing the scale. Social Cognitive and Affective Neuroscience, 4, 423–428.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Barroso, D., Catani, M., Ripolles, P., Dell’Acqua, F., Rodriguez-Fornells, A., & de Diego-Balaguer, R. (2013). Word learning is mediated by the left arcuate fasciculus. Proceedings of the National academy of Sciences of the United States of America, 110, 13168–13173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magee, W. L., & Davidson, J. W. (2002). The effect of music therapy on mood states in neurological patients: a pilot study. Journal of Music Therapy, 39, 20–29.

    Article  PubMed  Google Scholar 

  • Magee, W. L., & Stewart, L. (2015). The challenges and benefits of a genuine partnership between music therapy and neuroscience: a dialog between scientist and therapist. Frontiers in Human Neuroscience, 9, 223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19, 1233–1239.

    Article  PubMed  Google Scholar 

  • Maldjian, J. A., Laurienti, P. J., & Burdette, J. H. (2004). Precentral gyrus discrepancy in electronic versions of the Talairach atlas. NeuroImage, 21, 450–455.

    Article  PubMed  Google Scholar 

  • Marshall, R. S., Perera, G. M., Lazar, R. M., Krakauer, J. W., Constantine, R. C., & DeLaPaz, R. L. (2000). Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke, 31, 656–661.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, M., Elmer, S., Baumann, S., & Jancke, L. (2007). Short-term plasticity in the auditory system: differential neural responses to perception and imagery of speech and music. Restorative Neurology and Neuroscience, 25, 411–431.

    PubMed  Google Scholar 

  • Munte, T. F., Altenmuller, E., & Jancke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Review Neuroscience, 3, 473–478.

    Google Scholar 

  • Murray, C. J., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., et al. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 2197–2223.

    Article  PubMed  Google Scholar 

  • Nair, D. G., Hutchinson, S., Fregni, F., Alexander, M., Pascual-Leone, A., & Schlaug, G. (2007). Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. NeuroImage, 34, 253–263.

    Article  PubMed  Google Scholar 

  • Nudo, R. J., Wise, B. M., SiFuentes, F., & Milliken, G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 272, 1791–1794.

    Article  CAS  PubMed  Google Scholar 

  • Nys, G. M., van Zandvoort, M. J., de Kort, P. L., Jansen, B. P., de Haan, E. H., & Kappelle, L. J. (2007). Cognitive disorders in acute stroke: prevalence and clinical determinants. Cerebrovascular Diseases, 23, 408–416.

    Article  CAS  PubMed  Google Scholar 

  • O’Kelly, J., James, L., Palaniappan, R., Taborin, J., Fachner, J., & Magee, W. L. (2013). Neurophysiological and behavioral responses to music therapy in vegetative and minimally conscious States. Frontiers in Human Neuroscience, 7, 884.

    PubMed  PubMed Central  Google Scholar 

  • Pantev, C., & Herholz, S. C. (2011). Plasticity of the human auditory cortex related to musical training. Neuroscience and Biobehavioral Reviews, 35, 2140–2154.

    Article  PubMed  Google Scholar 

  • Penhune, V. B., & Steele, C. J. (2012). Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behavioural Brain Research, 226, 579–591.

    Article  PubMed  Google Scholar 

  • Picard, N., & Strick, P. L. (2001). Imaging the premotor areas. Current Opinion in Neurobiology, 11, 663–672.

    Article  CAS  PubMed  Google Scholar 

  • Prat, C. S., Keller, T. A., & Just, M. A. (2007). Individual differences in sentence comprehension: a functional magnetic resonance imaging investigation of syntactic and lexical processing demands. Journal Cognitive Neuroscience, 19, 1950–1963.

    Article  Google Scholar 

  • Rehme, A. K., Eickhoff, S. B., Wang, L. E., Fink, G. R., & Grefkes, C. (2011). Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. NeuroImage, 55, 1147–1158.

    Article  PubMed  Google Scholar 

  • Ripolles, P., Marco-Pallares, J., de Diego-Balaguer, R., Miro, J., Falip, M., Juncadella, et al. (2012). Analysis of automated methods for spatial normalization of lesioned brains. NeuroImage, 60, 1296–1306.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Fornells, A., Rojo, N., Amengual, J. L., Ripolles, P., Altenmuller, E., & Munte, T. F. (2012). The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients. Annals of the New York Academy of Sciences, 1252, 282–293.

    Article  PubMed  Google Scholar 

  • Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Benjamin, E. J., Berry, J. D., Borden, et al. (2012). Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation, 125, e2–e220.

    Article  PubMed  Google Scholar 

  • Rojo, N., Amengual, J., Juncadella, M., Rubio, F., Camara, E., Marco-Pallares, et al. (2011). Music-supported therapy induces plasticity in the sensorimotor cortex in chronic stroke: a single-case study using multimodal imaging (fMRI-TMS). Brain Injury, 25, 787–793.

    Article  PubMed  Google Scholar 

  • Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12, 191–200.

    Article  PubMed  Google Scholar 

  • Rosenkranz, K., Williamon, A., & Rothwell, J. C. (2007). Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. Journal of Neuroscience, 27, 5200–5206.

    Article  CAS  PubMed  Google Scholar 

  • Särkämö, T., & Soto, D. (2012). Music listening after stroke: beneficial effects and potential neural mechanisms. Annals of the New York Academy of Sciences, 1252, 266–281.

    Article  PubMed  Google Scholar 

  • Särkämö, T., Tervaniemi, M., Laitinen, S., Forsblom, A., Soinila, S., Mikkonen, et al. (2008). Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain, 131, 866–876.

    Article  PubMed  Google Scholar 

  • Särkämö, T., Tervaniemi, M., & Huotilainen, M. (2013). Music perception and cognition: development, neural basis, and rehabilitative use of music. WIREs Cognitive Science, 4, 441–451.

    Article  PubMed  Google Scholar 

  • Särkämö, T., Ripolles, P., Vepsalainen, H., Autti, T., Silvennoinen, H. M., Salli, et al. (2014). Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study. Frontiers in Human Neuroscience, 8, 245.

    PubMed  PubMed Central  Google Scholar 

  • Schaechter, J. D. (2004). Motor rehabilitation and brain plasticity after hemiparetic stroke. Progress in Neurobiology, 73, 61–72.

    Article  PubMed  Google Scholar 

  • Schlaug, G. (2001). The brain of musicians. A model for functional and structural adaptation. Annals of the New York Academy of Sciences, 930, 281–299.

    Article  CAS  PubMed  Google Scholar 

  • Schlaug, G., Jancke, L., Huang, Y., Staiger, J. F., & Steinmetz, H. (1995). Increased corpus callosum size in musicians. Neuropsychologia, 33, 1047–1055.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, S., Schonle, P. W., Altenmuller, E., & Munte, T. F. (2007). Using musical instruments to improve motor skill recovery following a stroke. Journal of Neurology, 254, 1339–1346.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, S., Munte, T. F., Rodriguez-Fornells, A., Sailer, M., & Altenmuller, E. (2010). Music-supported training is more efficient than functional motor training for recovery of fine motor skills in stroke patients. Music Perception, 27, 271–280.

    Article  Google Scholar 

  • Schulz, R., Braass, H., Liuzzi, G., Hoerniss, V., Lechner, P., Gerloff, et al. (2015). White matter integrity of premotor-motor connections is associated with motor output in chronic stroke patients. Neuroimage Clinical, 7, 82–86.

    Article  PubMed  Google Scholar 

  • Schulze, K., Gaab, N., & Schlaug, G. (2009). Perceiving pitch absolutely: comparing absolute and relative pitch possessors in a pitch memory task. BMC Neuroscience, 10, 106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seither-Preisler, A., Parncutt, R., & Schneider, P. (2014). Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children. Journal of Neuroscience, 34, 10937–10949.

    Article  CAS  PubMed  Google Scholar 

  • Seitz, R. J., Hoflich, P., Binkofski, F., Tellmann, L., Herzog, H., & Freund, H. J. (1998). Role of the premotor cortex in recovery from middle cerebral artery infarction. Archives of Neurology, 55, 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  • Strait, D. L., & Kraus, N. (2014). Biological impact of auditory expertise across the life span: musicians as a model of auditory learning. Hearing Research, 308, 109–121.

    Article  PubMed  Google Scholar 

  • Taub, E., Uswatte, G., & Elbert, T. (2002). New treatments in neurorehabilitation founded on basic research. Nature Review Neuroscience, 3, 228–236.

    Article  CAS  Google Scholar 

  • Thaut, M. H. (2015). The discovery of human auditory-motor entrainment and its role in the development of neurologic music therapy. Progress in Brain Research, 217, 253–266.

    Article  PubMed  Google Scholar 

  • Thaut, M. H., McIntosh, G. C., Rice, R. R., Miller, R. A., Rathburn, J., & Brault, J. M. (1993). Effect of rhythmic auditory cuing on temporal stride parameters and EMG patterns in hemiparetic gait of stroke patients. Journal of Neurological Rehabilitation, 7, 9–16.

    Google Scholar 

  • Thaut, M. H., McIntosh, G. C., Rice, R. R., Miller, R. A., Rathbun, J., & Brault, J. M. (1996). Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Movement Disorders, 11, 193–200.

    Article  CAS  PubMed  Google Scholar 

  • Thaut, M. H., Peterson, D. A., & McIntosh, G. C. (2005). Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory. Annals of the New York Academy Sciences, 1060, 243–254.

    Article  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.

    Article  CAS  PubMed  Google Scholar 

  • van der Lee, J. H., Beckerman, H., Lankhorst, G. J., & Bouter, L. M. (2001). The responsiveness of the action research Arm test and the Fugl-Meyer assessment scale in chronic stroke patients. Journal of Rehabilitation Medicine, 33, 110–113.

    Article  PubMed  Google Scholar 

  • Villeneuve, M., Penhune, V., & Lamontagne, A. (2014). A piano training program to improve manual dexterity and upper extremity function in chronic stroke survivors. Frontiers in Human Neuroscience, 8, 662.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan, C. Y., & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity across the life span. The Neuroscientist, 16, 566–577.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei, W., Bai, L., Wang, J., Dai, R., Tong, R. K., Zhang, Y., et al. (2013). A longitudinal study of hand motor recovery after sub-acute stroke: a study combined FMRI with diffusion tensor imaging. PLoS One, 8, e64154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiller, C., Ramsay, S. C., Wise, R. J., Friston, K. J., & Frackowiak, R. S. (1993). Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Annals of Neurology, 33, 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg, G. F., Chen, R., Ishii, K., Bushara, K. O., Eckloff, S., Croarkin, E., et al. (2003). Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabilitation and Neural Repair, 17, 48–57.

    Article  PubMed  Google Scholar 

  • Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: auditory-motor interactions in music perception and production. Nature Review Neuroscience, 8, 547–558.

    Article  CAS  Google Scholar 

  • Zhou, D., Thompson, W. K., & Siegle, G. (2009). MATLAB toolbox for functional connectivity. NeuroImage, 47, 1590–1607.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zumbansen, A., Peretz, I., & Hebert, S. (2014). Melodic intonation therapy: back to basics for future research. Frontiers in Neurology, 5, 7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by la Fundació La Marató TV3 (Spain), the DFG and FPU program AP2010-4179 to P.R. We are particularly grateful to all the participants for being part of this study. We want to also thank Clara Medrano, Gemma Torres, Gonçalo Padrao, Laura Merino and Sabine Schneider for their help.

Author contributions

E.A., T.F.M. and A.R.F. designed research; N.R., J.L.A., J.G.S., M.J., L.V., F.R., E.D. and C.G. performed research; P.R., N.R., E.C. and J.M.P. analyzed data; P.R., N.R., E.C., J.M.P., J.L.A., J.G.S., L.V., E.A., T.F.M. and A.R.F wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rodríguez-Fornells.

Ethics declarations

Conflict of interest

Ripollés P, Rojo N, Grau-Sánchez J, Amengual JL, Camara E, Marco-Pallarés J, Juncadella M, Vaquero L, Rubio F, Duarte E, Garrido C, Altenmuller E, Münte TF and Rodríguez-Fornells A, declare no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Additional information

P. Ripollés and N. Rojo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ripollés, P., Rojo, N., Grau-Sánchez, J. et al. Music supported therapy promotes motor plasticity in individuals with chronic stroke. Brain Imaging and Behavior 10, 1289–1307 (2016). https://doi.org/10.1007/s11682-015-9498-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9498-x

Keywords

Navigation