Skip to main content
Log in

Process-Property Relationship for Air Plasma-Sprayed Gadolinium Zirconate Coatings

Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The continuous need of elevating operating temperature of gas turbine engines has introduced several challenges with the current state-of-the-art yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBCs), requiring examination of new TBC material with high temperature phase stability, lower thermal conductivity, and resistance to environmental ash particles. Gadolinium zirconate (Gd2Zr2O7) (GDZ) has been shown to meet many of these requirements, and has, in fact, been successfully implemented in to engine components. However, several fundamental issues related to the process-ability, toughness, and microstructural differences for GDZ when compared to equivalent YSZ coating. This study seeks to critically address the process-structure-property correlations for plasma-sprayed GDZ coating subjected to controlled parametric exploration. Use of in-flight diagnostics coupled with in situ and ex situ coating property monitoring allows examination and comparison of the process-property interplay and the resultant differences between the two TBC compositions. The results indicate that it is feasible to retain material chemistry and fabricate relevant microstructures of interest with GDZ with concomitant performance advantages such as low conductivity, mechanical compliance, sintering resistance, and suppression of environmentally induced damage from ash particles. This study provides a framework for optimal design and manufacturing of emergent multi-layer and multi-material TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines, MRS Bull., 2012, 37(10), p 891-902

    Article  Google Scholar 

  2. C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8(1), p 77-91

    Article  Google Scholar 

  3. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(1), p 1-10

    Article  Google Scholar 

  4. C.G. Levi, J.W. Hutchinson, M.H. Vidal-Setif, and C.A. Johnson, Environmental Degradation of Thermal-Barrier Coatings by Molten Deposits, MRS Bull., 2012, 37(10), p 932-941

    Article  Google Scholar 

  5. J.M. Drexler, C.H. Chen, A.D. Gledhill, K. Shinoda, S. Sampath, and N.P. Padture, Plasma Sprayed Gadolinium Zirconate Thermal Barrier Coatings that are Resistant to Damage by Molten Ca-Mg-Al-Silicate Glass, Surf. Coat. Technol., 2012, 206(19-20), p 3911-3916

    Article  Google Scholar 

  6. R.M. Leckie, S. Kramer, M. Ruhle, and C.G. Levi, Thermochemical Compatibility Between Alumina and ZrO(2)-GdO(3/2) Thermal Barrier Coatings, Acta Mater., 2005, 53(11), p 3281-3292

    Article  Google Scholar 

  7. G. Mauer, D. Sebold, R. Vassen, and D. Stover, Improving Atmospheric Plasma Spraying of Zirconate Thermal Barrier Coatings Based on Particle Diagnostics, J. Therm. Spray. Technol., 2012, 21(3-4), p 363-371

    Article  Google Scholar 

  8. R. Vassen, M. Dietrich, H. Lehmann, X. Cao, G. Pracht, F. Tietz, D. Pitzer, and D. Stover, Development of Oxide Ceramics for an Application as TBC, Materialwiss Werkst, 2001, 32(8), p 673-677

    Article  Google Scholar 

  9. G. Mauer, M.O. Jarligo, D.E. Mack, and R. Vassen, Plasma-Sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions, J. Therm. Spray. Technol., 2013, 22(5), p 646-658

    Article  Google Scholar 

  10. R. Vassen, X.Q. Cao, F. Tietz, D. Basu, and D. Stover, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2000, 83(8), p 2023-2028

    Article  Google Scholar 

  11. S. Deshpande, A. Kulkarni, S. Sampath, and H. Herman, Application of Image Analysis for Characterization of Porosity in Thermal Spray Coatings and Correlation with Small Angle Neutron Scattering, Surf. Coat. Technol., 2004, 187(1), p 6-16

    Article  Google Scholar 

  12. Y. Tan, V. Srinivasan, T. Nakamura, S. Sampath, P. Bertrand, and G. Bertrand, Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings Via Controlled Powders and Processing Strategies, J. Therm. Spray. Technol., 2012, 21(5), p 950-962

    Article  Google Scholar 

  13. A. Vaidya, V. Sirinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability, Mater. Sci. Eng. A, 2008, 497(1-2), p 239-253

    Article  Google Scholar 

  14. Y. Tan, J.P. Longtin, S. Sampath, and H. Wang, Effect of the Starting Microstructure on the Thermal Properties of As-Sprayed and Thermally Exposed Plasma-Sprayed YSZ Coatings, J. Am. Ceram. Soc., 2009, 92(3), p 710-716

    Article  Google Scholar 

  15. T. Streibl, A. Vaidya, M. Friis, V. Srinivasan, and S. Sampath, A Critical Assessment of Particle Temperature Distributions During Plasma Spraying: Experimental Results for YSZ, Plasma Chem. Plasma Process., 2006, 26(1), p 73-102

    Article  Google Scholar 

  16. S. Sampath, V. Srinivasan, A. Valarezo, A. Vaidya, and T. Streibl, Sensing, Control, and In Situ Measurement of Coating Properties: An Integrated Approach Toward Establishing Process-Property Correlations, J. Therm. Spray. Technol., 2009, 18(2), p 243-255

    Article  Google Scholar 

  17. V. Srinivasan, M. Friis, A. Vaidya, T. Streibl, and S. Sampath, Particle Injection in Direct Current Air Plasma Spray: Salient Observations and Optimization Strategies, Plasma Chem. Plasma Process., 2007, 27(5), p 609-623

    Article  Google Scholar 

  18. V. Srinivasan, A. Vaidya, T. Streibl, M. Friis, and S. Sampath, On the Reproducibility of Air Plasma Spray Process and Control of Particle State, J. Therm. Spray. Technol., 2006, 15(4), p 739-743

    Article  Google Scholar 

  19. K. Shinoda, J. Colmenares-Angulo, A. Valarezo, and S. Sampath, Effect of Deposition Rate on the Stress Evolution of Plasma-Sprayed Yttria-Stabilized Zirconia, J. Therm. Spray. Technol., 2012, 21(6), p 1224-1233

    Article  Google Scholar 

  20. A. Valarezo, W.B. Choi, W. Chi, A. Gouldstone, and S. Sampath, Process Control and Characterization of NiCr Coatings by HVOF-DJ2700 System: A Process Map Approach, J. Therm. Spray. Technol., 2010, 19(5), p 852-865

    Article  Google Scholar 

  21. G. Dwivedi, T. Nakamura, and S. Sampath, Determination of Thermal Spray Coating Property with Curvature Measurements, J. Therm. Spray. Technol., 2013, 22(8), p 1337-1347

    Article  Google Scholar 

  22. G. Dwivedi, T. Wentz, S. Sampath, and T. Nakamura, Assessing Process and Coating Reliability Through Monitoring of Process and Design Relevant Coating Properties, J. Therm. Spray. Technol., 2010, 19(4), p 695-712

    Article  Google Scholar 

  23. Y.J. Liu, T. Nakamura, G. Dwivedi, A. Valarezo, and S. Sampath, Anelastic Behavior of Plasma-Sprayed Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(12), p 4036-4043

    Article  Google Scholar 

  24. G. Dwivedi, T. Nakamura, and S. Sampath, Controlled Introduction of Anelasticity in Plasma-Sprayed Ceramics, J. Am. Ceram. Soc., 2011, 94, p S104-S111

    Article  Google Scholar 

  25. A.D. Gledhill, K.M. Reddy, J.M. Drexler, K. Shinoda, S. Sampath, and N.P. Padture, Mitigation of Damage from Molten Fly Ash to Air-Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2011, 528(24), p 7214-7221

    Article  Google Scholar 

  26. J.M. Drexler, K. Shinoda, A.L. Ortiz, D.S. Li, A.L. Vasiliev, A.D. Gledhill, S. Sampath, and N.P. Padture, Air-Plasma-Sprayed Thermal Barrier Coatings that are Resistant to High-Temperature Attack by Glassy Deposits, Acta Mater., 2010, 58(20), p 6835-6844

    Article  Google Scholar 

  27. J. Wu, X.Z. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. Garcia, P. Miranzo, and M.I. Osendi, Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications, J. Am. Ceram. Soc., 2002, 85(12), p 3031-3035

    Article  Google Scholar 

  28. M. Zinkevich, C. Wang, F.M. Morales, M. Ruhle, and F. Aldinger, Phase Equilibria in the ZrO2-GdO1.5 System at 1400-1700°C, J. Alloy. Compd., 2005, 398(1-2), p 261-268

    Article  Google Scholar 

  29. W.G. Chi, S. Sampath, and H. Wang, Microstructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(8), p 2636-2645

    Article  Google Scholar 

  30. C. Mercer, J.R. Williams, D.R. Clarke, and A.G. Evans, On a Ferroelastic Mechanism Governing the Toughness of Metastable Tetragonal-Prime (t’) Yttria-Stabilized Zirconia, Proc. R. Soc. A, 2007, 463(2081), p 1393-1408

    Article  Google Scholar 

  31. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and E. Lara-Curzio, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging, J. Am. Ceram. Soc., 2014, 97(9), p 2736-2744

    Article  Google Scholar 

  32. F.R. Larson and J. Miller, A Time-Temperature Relationship for Rupture and Creep Stresses, Trans. ASME, 1952, 74, p 765-775

    Google Scholar 

  33. D.M. Zhu and R.A. Miller, Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings Under High Heat Flux Conditions, J. Therm. Spray. Technol., 2000, 9(2), p 175-180

    Article  Google Scholar 

  34. J. Wu, N.P. Padture, P.G. Klemens, M. Gell, E. Garcia, P. Miranzo, and M.I. Osendi, Thermal Conductivity of Ceramics in the ZrO2-GdO1.5 System, J. Mater. Res., 2002, 17(12), p 3193-3200

    Article  Google Scholar 

  35. J.M. Drexler, A.D. Gledhill, K. Shinoda, A.L. Vasiliev, K.M. Reddy, S. Sampath, and N.P. Padture, Jet Engine Coatings for Resisting Volcanic Ash Damage, Adv. Mater., 2011, 23(21), p 2419-2424

    Article  Google Scholar 

  36. N.E. Ulion, M. Trubelja, M.J. Maloney, and D.A. Litton, Adds the Minimum Weight While Providing the Maximum Thermal Insulation Capability; for Long Life, Stability, Economy, Gas Turbines. Coated Part Comprising a Thermal Barrier Coating Offering Lower Thermal Conductivity But Which Exhibits Suitable Resistance to Spallation, 2008, US7326470 B2

  37. D. Lee, T.W. Kim, and K. Sung, Design of Thermal Barrier Coatings Using Gadolinium Zirconate Ceramics: A Study on Gadolinium Zirconate/YSZ Bilayers, J. Ceram. Soc. Jpn., 2009, 117(1367), p 550-554

    Article  Google Scholar 

  38. G. Dwivedi, V. Viswanathan, and S. Sampath, Multilayer Thermal Barrier Coatings for Gasified Coal Based Turbine Engines, Adv. Mater. Process., 2013, 171(5), p 49-51

    Google Scholar 

  39. R. Vassen, E. Traeger, and D. Stover, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 351-361

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the U.S. Department of Energy (DOE Award: DE-FE0004771). We thank Howard Waller, Saint-Gobain Inc. USA, for providing Gd2Zr2O7 and YSZ powders. The authors are thankful to Dr. Hsin Wang, Oak Ridge National Laboratory, USA, for the high temperature measurements of coatings. We are grateful to Prof. Nitin Padture, Brown University, USA, for providing lignite ash. The financial support through the Industrial Consortium for Thermal Spray Technology at Stony Brook is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, G., Tan, Y., Viswanathan, V. et al. Process-Property Relationship for Air Plasma-Sprayed Gadolinium Zirconate Coatings. J Therm Spray Tech 24, 454–466 (2015). https://doi.org/10.1007/s11666-014-0196-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0196-9

Keywords

Navigation