Journal of Thermal Spray Technology

, Volume 19, Issue 1, pp 219–225

Suspension Plasma Spraying: Process Characteristics and Applications

  • Robert Vaßen
  • Holger Kaßner
  • Georg Mauer
  • Detlev Stöver
Peer Reviewed

DOI: 10.1007/s11666-009-9451-x

Cite this article as:
Vaßen, R., Kaßner, H., Mauer, G. et al. J Therm Spray Tech (2010) 19: 219. doi:10.1007/s11666-009-9451-x

Abstract

Suspension plasma spraying (SPS) offers the manufacture of unique microstructures which are not possible with conventional powdery feedstock. Due to the considerably smaller size of the droplets and also the further fragmentation of these in the plasma jet, the attainable microstructural features like splat and pore sizes can be downsized to the nanometer range. Our present understanding of the deposition process including injection, suspension plasma plume interaction, and deposition will be outlined. The drawn conclusions are based on analysis of the coating microstructures in combination with particle temperature and velocity measurements as well as enthalpy probe investigations. The last measurements with the water cooled stagnation probe gives valuable information on the interaction of the carrier fluid with the plasma plume. Meanwhile, different areas of application of SPS coatings are known. In this paper, the focus will be on coatings for energy systems. Thermal barrier coatings (TBCs) for modern gas turbines are one important application field. SPS coatings offer the manufacture of strain-tolerant, segmented TBCs with low thermal conductivity. In addition, highly reflective coatings, which reduce the thermal load of the parts from radiation, can be produced. Further applications of SPS coatings as cathode layers in solid oxide fuel cells (SOFC) and for photovoltaic (PV) applications will be presented.

Keywords

photovoltaic solid oxide fuel cells suspension plasma spraying thermal barrier coatings 

Copyright information

© ASM International 2009

Authors and Affiliations

  • Robert Vaßen
    • 1
  • Holger Kaßner
    • 1
  • Georg Mauer
    • 1
  • Detlev Stöver
    • 1
  1. 1.Forschungszentrum Jülich GmbH, Institut für Energieforschung (IEF-1)JülichGermany

Personalised recommendations