Skip to main content
Log in

New Correlations Between Monotonic and Cyclic Properties of Metallic Materials

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Knowledge of the cyclic properties of metallic materials is often critical to correctly design structural components. However, cyclic data are not easily available in the literature, while tensile test data are easier to find in specialized sites or vendor catalogs. In this study, the cyclic strength coefficient and the cyclic strain hardening exponent of the Ramberg–Osgood law were evaluated using exclusively data obtained through monotonic tensile tests. The analyses were carried out on a large set of materials. The database used is composed of 338 alloys, mainly iron alloys, but also titanium and aluminum alloys. New subdivisions of the materials were introduced. Several original relations were suggested to correlate static and cyclic strength parameters. The evaluated values of both cyclic strength coefficient and cyclic strain hardening exponent were compared with experimental values coming from cyclic test, obtaining a satisfactory agreement and a higher accuracy if compared with similar relations found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

E :

Modulus of elasticity

K′:

Cyclic strength coefficient

R 2 :

Coefficient of determination

R m :

Ultimate tensile strength

R p :

Monotonic yield stress

a, b, c :

Numerical constant/coefficient

n :

Monotonic strain hardening exponent

n′:

Cyclic strain hardening exponent

Δε :

Strain range

Δσ :

Stress range

α :

New fracture-ductility parameter

ε f :

True fracture ductility

σ f :

True fracture strength

ψ :

Reduction in area

References

  1. R.I. Stephens, A. Fatemi, R.R. Stephens, and H.O. Fuchs, Metal Fatigue in Engineering, 2nd ed., Wiley, New York, 2001

    Google Scholar 

  2. M.A. Meggiolaro, and J.T.P. Castro, A Critical Evaluation of Fatigue Crack Initiation Parameter Estimates, Fatigue 2004—2nd SAE Brazil Int. Conf. on Fatigue, on CD-ROM, June 21–23, 2004 (São Paulo, Brazil), SAE paper n. 2004-01-2219, SAE International, 2004.

  3. Z. Zhang, J. Li, Q. Sun, Y. Qiao, and C. Li, Two Parameters Describing Cyclic Hardening/Softening Behaviors of Metallic Materials, J. Mater. Eng. Perform., 2009, 18(3), p 237–244. doi:10.1007/s11665-008-9287-4

    Article  Google Scholar 

  4. R. Basan, M. Franulović, and S. Smokvina-Hanza, Estimation of cyclic Stress–Strain Curves for Low-Alloy Steel from Hardness, Metalurgija, 2010, 49(2), p 83–86

    Google Scholar 

  5. J. Li, Q. Sun, Z. Zhang, C. Li, and Y. Qiao, Theoretical Estimation to the Cyclic Yield Strength and Fatigue Limit for Alloy Steels, Mech. Res. Commun., 2009, 36, p 316–321. doi:10.1016/j.mechrescom.2008.10.011

    Article  Google Scholar 

  6. A. Tomasella, C. El Dsoki, H. Hanselka, and H. Kaufmann, A Computational Estimation of Cyclic Material Properties Using Artificial Neural Networks, Procedia Eng., 2011, 10, p 439–445. doi:10.1016/j.proeng.2011.04.075

    Article  Google Scholar 

  7. R. Ghajar, N. Naserifar, H. Sadati, and K.J. Alizadeh, A Neural Network Approach for Predicting Steel Properties Characterizing Cyclic Ramberg–Osgood Equation, Fatigue Fract. Eng. Mater. Struct., 2011, 34(7), p 534–544. doi:10.1111/j.1460-2695.2010.01545.x

    Article  Google Scholar 

  8. K. Hatanaka, T. Fujimitsu, and T. Yamada, An Analysis of Stress–Strain Hysteresis Loop and Cyclic Stress–Strain Curve in Structural Steels, Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, K.-T. Rie, Ed., September 7–11, 1987 (Munich, FGR), Elsevier Applied Science Publishers, 1987, p 155–164. ISBN 978-94-010-8049-1, doi:10.1007/978-94-009-3459-7_23.

  9. T. Marohnic, R. Basan, and M. Franulović, Evaluation of the Possibility of Estimating Cyclic Stress–Strain Parameters and Curves from Monotonic Properties of Steels, Procedia Eng., 2015, 101, p 77–284. doi:10.1016/j.proeng.2015.02.029

    Article  Google Scholar 

  10. Z. Zhang, Y. Qiao, Q. Sun, C. Li, and J. Li, Theoretical Estimation to the Cyclic Strength Coefficient and the Cyclic Strain-Hardening Exponent for Metallic Materials: Preliminary Study, J. Mater. Eng. Perform., 2009, 18(3), p 245–254. doi:10.1007/s11665-008-9286-5

    Article  Google Scholar 

  11. Z. Lopez and A. Fatemi, A Method of Predicting Cyclic Stress–Strain Curve from Tensile Properties for Steels, Mater. Sci. Eng. A, 2012, 556, p 540–550. doi:10.1016/j.msea.2012.07.024

    Article  Google Scholar 

  12. Z. Lopez, Correlations among Tensile and Cyclic Deformation Properties for Steels and Implications on Fatigue Life Predictions, Thesis submitted for the Master of Science Degree in Mechanical Engineering, University of Toledo, USA, 2012

  13. C. Boller and T. Seeger, Materials Data for Cyclic Loading, Elsevier, Amsterdam, 1987

    Google Scholar 

  14. A. Bäumel and T. Seeger, Materials Data for Cyclic Loading, Supplement 1, Elsevier, Amsterdam, 1990

    Google Scholar 

  15. N.E. Dowling, Mechanical Behavior of Materials, 4th ed., Prentice-Hall Int, New Jersey, 2012

    Google Scholar 

  16. R.W. Smith, M.H. Hirschberg, S.S. Manson, Fatigue Behavior under Strain Cycling in Low and Intermediate Life Range, Technical Note D-1574, 1963, National Aeronautics and Space Administration, Washington, USA

  17. K.S. Kim, X. Chen, C. Han, and H.W. Lee, Estimation methods for fatigue properties of steels under axial and torsional loading, Int. J. Fatigue, 2001, 24, p 783–793. doi:10.1016/s0142-1123(01)00190-6

    Article  Google Scholar 

  18. M.L. Roessle and A. Fatemi, Strain-Controlled Fatigue Properties of Steels and Some Simple Approximations, Int. J. Fatigue, 2000, 22(6), p 495–511. doi:10.1016/s0142-1123(00)00026-8

    Article  Google Scholar 

  19. R. Basan, MATDAT Materials Properties Database, Version 1.0. http://www.matdat.com, 2011, Accessed: 18 October 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Zonfrillo.

Appendix

Appendix

The numerical values of the constants that appear in the relations are listed in Table 9 according to corresponding equation number.

Table 9 Numerical values of the constants in the various relations

Data are gathered from the technical literature (Ref 10, 11, 13, 14). In particular, they are gathered from tables 1-3 in Ref 10 and from table 1 in Ref 11 (not reported here). The designations of the materials collected from Ref 13, 14 are listed in Table 10, together with the identification number reported in the online material properties database MATDAT (Ref 19).

Table 10 Designations of the materials from Ref 13, 14 and corresponding identification number in MATDAT Materials Properties Database

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zonfrillo, G. New Correlations Between Monotonic and Cyclic Properties of Metallic Materials. J. of Materi Eng and Perform 26, 1569–1580 (2017). https://doi.org/10.1007/s11665-017-2595-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2595-9

Keywords

Navigation