Skip to main content
Log in

Elevated Temperature Mechanical Behavior of Severely Deformed Titanium

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this investigation, compression tests were performed at a strain rate of 0.001-0.1 s−1 in the range of 600-900 °C to study the high temperature deformation behavior and flow stress model of commercial purity (CP) titanium after severe plastic deformation (SPD). It was observed that SPD via equal channel angular extrusion can considerably enhance the flow strength of CP titanium deformed at 600 and 700 °C. Post-compression microstructures showed that, a fine grained structure can be retained at a deformation temperature of 600 °C. Based on the kinematics of dynamic recovery and recrystallization, the flow stress constitutive equations were established. The validity of the model was demonstrated with reasonable agreement by comparing the experimental data with the numerical results. The error values were less than 5% at all deformation temperatures except 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev, Influence of ECAP Routes on the Microstructure and Properties of Pure Ti, Mater. Sci. Eng. A, 2001, 299, p 59–67

    Article  Google Scholar 

  2. Z. Fan, H. Jiang, X. Sun, J. Song, X. Zhang, and C. Xie, Microstructures and Mechanical Deformation Behaviors of Ultrafine-Grained Commercial Pure (Grade 3) Ti Processed by Two-Step Severe Plastic Deformation, Mater. Sci. Eng. A, 2009, 527, p 45–51

    Article  Google Scholar 

  3. Y.T. Zhu, Y.R. Kolobov, G.P. Grabovetskaya, V.V. Stolyarov, N.V. Girsova, and R.Z. Valiev, Microstructures and Mechanical Properties of Ultrafine-Grained Ti Foil Processed by Equal-Channel Angular Pressing and Cold Rolling, J. Mater. Res., 2003, 18, p 1011–1016

    Article  Google Scholar 

  4. C.T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, and T.G. Langdon, Effect of Grain Size on the Micro-tribological Behavior of Pure Titanium Processed by High-Pressure Torsion, Wear, 2012, 280–281, p 28–35

    Article  Google Scholar 

  5. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev, Grain Refinement and Properties of Pure Ti Processed by Warm ECAP and Cold Rolling, Mater. Sci. Eng. A, 2003, 343, p 43–50

    Article  Google Scholar 

  6. G.G. Yapici, I. Karaman, and H.J. Maier, Mechanical Flow Anisotropy in Severely Deformed Pure Titanium, Mater. Sci. Eng. A, 2006, 434, p 294–302

    Article  Google Scholar 

  7. C.S. Meredith and A.S. Khan, Texture Evolution and Anisotropy in the Thermo-mechanical Response of UFG Ti Processed via Equal Channel Angular Pressing, Int. J. Plast., 2012, 30–31, p 202–217

    Article  Google Scholar 

  8. S.V. Sajadifar, M. Ketabchi, and M. Nourani, Modeling of Mechanical Characteristics in Hot Deformation of 4130 Steel, Steel Res. Int., 2011, 82, p 934–939

    Article  Google Scholar 

  9. S.V. Sajadifar, G.G. Yapici, M. Ketabchi, and B. Bemanizadeh, High Temperature Deformation Behavior of 4340 Steel: Activation Energy Calculation and Modeling of Flow Response, J. Iron. Steel Res. Int., 2012, 20, p 140–146

    Google Scholar 

  10. Y.C. Lin, Q.F. Li, Y.C. Xia, and L.T. Li, A Phenomenological Constitutive Model for High Temperature Flow Stress Prediction of Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2012, 534, p 654–662

    Article  Google Scholar 

  11. L. Zhang, Z. Li, Q. Lei, W.T. Qiu, and H.T. Luo, Hot Deformation Behavior of Cu-8.0Ni-1.8Si-0.15Mg Alloy, Mater. Sci. Eng. A, 2011, 528, p 1641–1647

    Article  Google Scholar 

  12. Z. Chen, Z. Li, and C. Yu, Hot Deformation Behavior of an Extruded Mg-Li-Zn-RE Alloy, Mater. Sci. Eng. A, 2011, 528, p 961–966

    Article  Google Scholar 

  13. X. Chun and Z. Wen-feng, Transformation Mechanism and Mechanical Properties of Commercially Pure Titanium, Trans. Nonferr. Met. Soc., 2010, 20, p 2162–2167

    Article  Google Scholar 

  14. L.C. Tsao, H.Y. Wu, J.C. Leong, and C.J. Fang, Flow Stress Behavior of Commercial Pure Titanium Sheet During Warm Tensile Deformation, Mater. Des., 2012, 34, p 179–184

    Article  Google Scholar 

  15. Z. Zeng, Y. Zhang, and S. Jonsson, Deformation Behaviour of Commercially Pure Titanium During Simple Hot Compression, Mater. Des., 2009, 30, p 3105–3111

    Article  Google Scholar 

  16. Z. Zeng, S. Jonsson, and Y. Zhang, Constitutive Equations for Pure Titanium at Elevated Temperatures, Mater. Sci. Eng. A, 2009, 505, p 116–119

    Article  Google Scholar 

  17. Y.C. Lin, L.T. Li, and Y.Q. Jiang, A Phenomenological Constitutive Model for Describing Thermo-viscoplastic Behavior of Al-Zn-Mg-Cu Alloy Under Hot working Condition, Exp. Mech., 2012, 52, p 993–1002

    Article  Google Scholar 

  18. K. Dehghani and A.A. Khamei, Modeling the Hot-Deformation Behavior of Ni60 wt%-Ti40 wt% Intermetallic Alloy, J. Alloy. Compd., 2010, 490, p 377–381

    Article  Google Scholar 

  19. J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57, p 2748–2756

    Article  Google Scholar 

  20. V.M. Segal, Materials Processing by Simple Shear, Mater. Sci. Eng. A, 1995, 197, p 157–164

    Article  Google Scholar 

  21. G. Purcek, G.G. Yapici, I. Karaman, and H.J. Maier, Effect of Commercial Purity Levels on the Mechanical Properties of Ultrafine-Grained Titanium, Mater. Sci. Eng. A, 2011, 528, p 2303–2308

    Article  Google Scholar 

  22. V.M. Segal, R.E. Goforth, and K.T. Hartwig, Apparatus and Method for Deformation Processing of Metals, Ceramics, and Other Materials, Texas A&M University, U.S. Patent, 1995, No. 5,400,633.

  23. G.G. Yapici, I. Karaman, Z.P. Luo, H.J. Maier, and Y.I. Chumlyakov, Microstructural Refinement and Deformation Twinning During Severe Plastic Deformation of 316L Stainless Steel at High Temperatures, J. Mater. Res., 2004, 19, p 2268–2278

    Article  Google Scholar 

  24. I. Karaman, G.G. Yapici, Y.I. Chumlyakov, and I.V. Kireeva, Deformation Twinning in Difficult-to-Work Alloys During Severe Plastic Deformation, Mater. Sci. Eng. A, 2005, 410–411, p 243–247

    Article  Google Scholar 

  25. E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 684–691

    Article  Google Scholar 

  26. K. Dehghani and A.A. Khamei, Hot Deformation Behavior of 60Nitinol (Ni60wt%-Ti40wt%) Alloy: Experimental and Computational Studies, Mater. Sci. Eng. A, 2010, 527, p 684–690

    Article  Google Scholar 

  27. R. Ebrahimi and A. Najafizadeh, Optimization of Hot Workability in Ti-IF Steel using the Processing Map, Int. J. ISSI, 2004, 1, p 1–7

    Google Scholar 

  28. Y. Niu, M. Li, H. Hou, Y. Wang, and Y. Lin, High Temperature Deformation Behavior of Ti-6Al-4V Alloy Without and with Hydrogenation Content of 0.27 wt%, J. Mater. Eng. Perform., 2010, 19, p 59–63

    Article  Google Scholar 

  29. S. Hotta, T. Murakami, T. Narushima, Y. Iguchi, and C. Ouchi, Effects of Dynamic Recrystallization on γ Grain Refinement and Improvement of Micro Segregation of as Cast Austenite in 9% Ni Steel, ISIJ Int., 2005, 45, p 338–346

    Article  Google Scholar 

  30. M.E. Wahabi, J.M. Cabrera, and J.M. Prado, Hot Working of Two AISI, 304 Steels: a Comparative Study, Mater. Sci. Eng. A, 2003, 343, p 116–125

    Article  Google Scholar 

  31. Y. Liu, R. Hu, J. Li, H. Kou, H. Li, H. Chang, and H. Fu, Deformation Characteristics of As-Received Haynes230 Nickel Base Superalloy, Mater. Sci. Eng. A, 2008, 497, p 283–289

    Article  Google Scholar 

  32. S. Suwas, B. Beausir, L.S. Tóth, J.J. Fundenberger, and G. Gottstein, Texture Evolution in Commercially Pure Titanium After Warm Equal Channel Angular Extrusion, Acta Mater., 2011, 59, p 1121–1133

    Article  Google Scholar 

  33. X. Yang, H. Miura, and T. Sakai, Dynamic Evolution of New Grains in Magnesium Alloy AZ31 During Hot Deformation, Mater. Trans., 2003, 44, p 197–203

    Article  Google Scholar 

  34. S.V. Sajadifar, M. Ketabchi, and B. Bemanizadeh, Dynamic Recrystallization Behavior and Hot Deformation Characteristics in 4340 steel, Metallurgist, 2012, 56, p 310–320

    Article  Google Scholar 

  35. Y.C. Lin, M.S. Chen, and J. Zhong, Microstructural Evolution in 42CrMo Steel During Compression at Elevated Temperature, Mater. Lett., 2008, 62, p 2132–2135

    Article  Google Scholar 

  36. M. Nourani, S.V. Sajadifar, M. Ketabchi, A.S. Milani, and S. Yannacopoulos, On the Microstructural Evolution of 4130 Steel during Hot Compression, Recent Pat. Mater. Sci., 2012, 5, p 74–83

    Article  Google Scholar 

  37. I. Salvatori, T. Inoue, and K. Nagal, Ultrafine Grain Structure through Dynamic Recrystallization for Type 304 Stainless Steel, ISIJ Int., 2002, 42, p 744–750

    Article  Google Scholar 

  38. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138

    Article  Google Scholar 

  39. I.A. Maksoud, H. Ahmed, and J. Rödel, Investigation of the Effect of Strain Rate and Temperature on the Deformability and Microstructure Evolution of AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2009, 504, p 40–48

    Article  Google Scholar 

  40. Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35, p 142–150

    Article  Google Scholar 

  41. T. Sakai and J.J. Jonas, Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32, p 189–209

    Article  Google Scholar 

  42. T. Sakai, Dynamic Recrystallization Microstructures Under Hot Working Conditions, J. Mater. Process. Technol., 1995, 53, p 349–361

    Article  Google Scholar 

  43. H. Asgharzadeh and A. Simchi, Hot Deformation Behavior of P/M Al6061-20% SiC Composite, Mater. Sci. Forum, 2007, 534–536, p 897–900

    Article  Google Scholar 

  44. R.S. Mishra, V.V. Stolyarov, C. Echer, R.Z. Valiev, and A.K. Mukherjee, Mechanical Behavior and Superplasticity of a Severe Plastic Deformation Processed Nanocrystalline Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2001, 298, p 44–50

    Article  Google Scholar 

  45. M. Shaban and B. Eghbali, Determination of Critical Conditions for Dynamic Recrystallization of a Microalloyed Steel, Mater. Sci. Eng. A, 2010, 527, p 4320–4325

    Article  Google Scholar 

  46. H. Asgharzadeh, H.S. Kim, and A. Simchi, Microstructure, Strengthening Mechanisms and Hot Deformation Behavior of an Oxide-Dispersion Strengthened UFG Al6063 Alloy, Mater. Charact., 2013, 75, p 108–114

    Article  Google Scholar 

  47. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 1st ed., Pergamon, Oxford, 1996

    Google Scholar 

  48. C.M. Sellars and C.H.J. Davis, Ed., Hot Working and Forming Processes, Metals Society, London, 1979

    Google Scholar 

  49. C.M. Sellars, The Kinetics of Softening Process during Hot Working of Austenite, Czech J. Phys., 1985, 35, p 239–248

    Article  Google Scholar 

  50. E.A. Brandes and G.B. Brook, Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, London, 1992

    Google Scholar 

  51. N.G. Jones, R.J. Dashwood, D. Dye, and M. Jackson, Thermomechanical Processing of Ti-5Al-5Mo-5V-3Cr, Mater. Sci. Eng. A, 2008, 490, p 369–377

    Article  Google Scholar 

  52. J. Zhang, H. Di, H. Wang, K. Mao, T. Ma, and Y. Cao, Hot Deformation Behavior of Ti-15-3 Titanium Alloy: A Study Using Processing Maps, Activation Energy Map, and Zener-Hollomon Parameter Map, J. Mater. Sci., 2012, 47, p 4000–40011

    Article  Google Scholar 

  53. D.G. Robertson and H.B. McShane, Analysis of High Temperature Flow Stress of Titanium Alloys IMI, 550 and Ti-10V-2Fe-3AI, during Isothermal Forging, Mater. Sci. Technol., 1998, 14, p 339–345

    Article  Google Scholar 

  54. A. Laasraoui and J.J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates, Metall. Mater. Trans. A, 1991, 22, p 1545–1558

    Article  Google Scholar 

  55. H. Asgharzadeh, A. Simchi, and H.S. Kim, High-Temperature Deformation and Structural Restoration of a Nanostructured Al Alloy, Scr. Mater., 2012, 66, p 911–914

    Article  Google Scholar 

  56. Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One Parameter Models, Acta Metall., 1984, 32, p 57–70

    Article  Google Scholar 

  57. R.E. Smallman and R.J. Bishop, Modern Physical Metallurgy and Materials Engineering, 6th ed., Butterworth-Heinemann, New York, 2002

    Google Scholar 

  58. R.W.K. Honeycombe and H.K.D.H. Bhadeshia, Steels Microstructure and Properties, Edward Arnold, London, 1981

    Google Scholar 

  59. L.X. Kong, P.D. Hodgson, and B. Wang, Development of Constitutive Models for Metal Forming with Cyclic Strain Softening, J. Mater. Process. Technol., 1999, 89–90, p 44–50

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the Marie Curie Career Integration Grant within the FP7 program for supporting this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guney Guven Yapici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajadifar, S.V., Yapici, G.G. Elevated Temperature Mechanical Behavior of Severely Deformed Titanium. J. of Materi Eng and Perform 23, 1834–1844 (2014). https://doi.org/10.1007/s11665-014-0947-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0947-2

Keywords

Navigation