Skip to main content
Log in

Self-Diffusion in Grain Boundaries and Dislocation Pipes in Al, Fe, and Ni and Application to AlN Precipitation in Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Diffusion along microstructural defects, such as grain boundaries or dislocation pipes, is significantly faster than diffusion through an undisturbed crystal. The ratio of diffusion enhancement is 3-4 orders of magnitude close to the melting point and reaches up to several ten orders of magnitude close to room temperature. An assessment of literature shows a large scatter in the available data and emphasizes the need for representative mean values. Applying a least mean square fit to selected experimental information delivers temperature-dependent functions for the ratio of grain boundary and dislocation pipe to bulk diffusion, respectively. We demonstrate that application of the attained results in a computational framework for the kinetics of precipitation makes the predictive simulation possible for the evolution of particles located at dislocations and grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C.E. Campbell and A.L. Rukhin, Evaluation of Self-Diffusion Data Using Weighted Means Statistics, Acta Mater., 2011, 59(13), p 5194–5201

    Article  Google Scholar 

  2. J. Fridberg, L.-E. Törndahl, and M. Hillert, Diffusion in Iron, Jernkont. Ann., 1969, 153, p 263–276

    Google Scholar 

  3. B. Jönsson, On Ferromagnetic Ordering and Lattice Diffusion—A Simple Model, Z. Metallkd., 1992, 83(5), p 349–355

    Google Scholar 

  4. I. Kaur and W. Gust, 12 Grain and interphase boundary diffusion, In: Landolt-Börnstein—Group III Condensed Matter: Numerical Data and Functional Relationships in Science and Technology, Volume 26: Diffusion in Solid Metals and Alloys, Springer Materials, 2012

  5. C. Leymonie, Y. Adda, A. Kirianenko, and P. Lacombe, Nouvelle determination des constantes d’autodiffusion intergranulaire du fer cubique centre, C.R. Acad. Sci. Paris, 1959, 248, p 1512–1515

    Google Scholar 

  6. H. Hänsel, L. Stratmann, H. Keller, and H.J. Grabke, Effects of the Grain Boundary Segregants Phosphorus, Sulfur, Carbon and Nitrogen on the Grain Boundary Self-Diffusivity in Alpha-Iron, Acta Metall., 1985, 33(4), p 659–665

    Article  Google Scholar 

  7. S.V. Divinski, G. Reglitz, and G. Wilde, Grain Boundary Self-Diffusion in Polycrystalline Nickel of Different Purity Levels, Acta Mater., 2010, 58(2), p 386–395

    Article  Google Scholar 

  8. T. Surholt and C. Herzig, Grain Boundary Self-Diffusion in Cu Polycrystals of Different Purity, Acta Mater., 1997, 45(9), p 3817–3823

    Article  Google Scholar 

  9. N.L. Peterson, Self-Diffusion in Pure Metals, J. Nucl. Mater., 1978, 69&70, p 3–37

    Article  Google Scholar 

  10. J. Kwiecinski and J.W. Wyrzykowski, Investigation of Grain Boundary Self-Diffusion at Low Temperatures in Polycrystalline Aluminium by Means of the Dislocation Spreading Method, Acta Metall. Mater., 1991, 39(8), p 1953–1958

    Article  Google Scholar 

  11. E. Ronander and S. Kritzinger, A Quantitative Study of Anomalous Annealing Phenomena in Quenched Aluminum, J. Appl. Phys., 1978, 49(7), p 3980–3986

    Article  Google Scholar 

  12. N.W. de Reca and C.A. Pampillo, Grain Boundary Diffusivity Via Bulk Diffusion Measurements During Grain Growth, Scripta Metall. Mater., 1975, 9(12), p 1355–1361

    Article  Google Scholar 

  13. V. Rothova, J. Bursik, M. Svoboda, and J. Cermak, Grain Boundary Self-Diffusion in Nickel, Defect Diffus. Forum, 2007, 263, p 207–212

    Article  Google Scholar 

  14. R.F. Canon and J.P. Stark, Grain Boundary Self-Diffusion in Nickel, J. Appl. Phys., 1969, 40(11), p 366–373

    Google Scholar 

  15. J. Cermak and Z. Cochnar, Self-Diffusion of 63Ni Along Dislocations, Mater. Sci. Eng., 1994, 174(1), p 9–13

    Article  Google Scholar 

  16. A. Hässner, Untersuchung der Korngrenzdiffusion von Zn-65 in alpha-Aluminium-Zink-Legierungen, Krist. Tech., 1974, 9(12), p 1371–1388

    Article  Google Scholar 

  17. H. Tanimoto, P. Farber, R. Würschum, R.Z. Valiev, and H.-E. Schaefer, Self-Diffusion in High-Density Nanocrystalline Fe, Nanostruct. Mater., 1999, 12(5), p 681–684

    Article  Google Scholar 

  18. S.V. Divinski, J. Geise, E. Rabkin, and C. Herzig, Grain Boundary Self-Diffusion in α-Iron of Different Purity: Effect of Dislocation Enhanced Diffusion, Z. Metallkd., 2004, 95(10), p 945–952

    Article  Google Scholar 

  19. Y. Shima, Y. Ishikawa, H. Nitta, Y. Yamazaki, K. Mimura, M. Isshiki, and Y. Iijima, Self-Diffusion Along Dislocations in Ultra High Purity Iron, Mater. Trans., 2002, 43(2), p 173–177

    Article  Google Scholar 

  20. W. Lange, A. Hässner, and G. Mischer, Messung der Korngrenzendiffusion von Nickel-63 in Nickel und γ-Eisen, Phys. Stat. Sol., 1964, 5(1), p 63–71

    Article  Google Scholar 

  21. V.T. Borisov, V.M. Golikov, and G.V. Scherbedinskiy, Relation Between Diffusion Coefficients and Grain Boundary Energy, Fiz. Metal. Metalloved., 1964, 17(6), p 881–885

    Google Scholar 

  22. P. Guiraldenq and P. Lacombe, Mesure des coefficients d’autodiffusion intergranulaire du fer en phase γ et comparaison avec l’autodiffusion aux joints de grains du fer α, Acta Metall., 1965, 13(1), p 51–53

    Article  Google Scholar 

  23. G. Stechauner and E. Kozeschnik, Unpublished Research, 2013.

  24. T. Gladman, D. Dulieu, I. D. McIvor, Structure-Property Relationships in High-Strength Microalloyed Steels, In Proceedings of an International Symposium on High-Strength, Low-Alloy Steels, Washington DC, USA, October 1975

  25. E. Povoden-Karadeniz, Thermodynamic database mc_fe_v2.008.tdb, 2013

  26. E. Povoden-Karadeniz, Mobility database mc_fe_v2.000_prebeta_004, 2013.

  27. E. Kozeschnik, J. Svoboda, R. Radis, and F.D. Fischer, Mean-Field Model for the Growth and Coarsening of Stoichiometric Precipitates at Grain Boundaries, Model. Simul. Mater. Sci., 2010, 18(1), p 1–19

    Article  Google Scholar 

  28. R. Radis and E. Kozeschnik, Numerical Simulation of NbC Precipitation in Microalloyed Steel, Model. Simul. Mater. Sci., 2012, 20(5), p 1–15

    Article  Google Scholar 

  29. A. Brahmi and R. Borrelly, Study of Aluminium Nitride Precipitation in Pure Fe-Al-N Alloy by Thermoelectric Power Measurements, Acta Mater., 1997, 45(5), p 1889–1897

    Article  Google Scholar 

  30. P. König, W. Scholz, and H. Ulmer, Wechselwirkung von Aluminium, Vanadium und Stickstoff in aluminiumberuhigten, mit Vanadin und Stickstoff legierten schweißbaren Baustählen mit rd. 0.2 % C und 1.5 % Mn, Archiv für das Eisenhüttenwesen, 1961, 32(8), p 541–556

  31. R. Radis and E. Kozeschnik, Kinetics of AlN Precipitation in Microalloyed Steel, Model. Simul. Mater. Sc., 2010, 18(5), p 1–16

    Article  Google Scholar 

Download references

Acknowledgment

Financial support by the Austrian Federal Government (in particular from the Bundesministerium für Verkehr, Innovation und Technologie and the Bundesministerium für Wirtschaft, Familie und Jugend) and the Styrian Provincial Government, represented by Österreichische Forschungsförderungsgesellschaft mbH and by Steirische Wirtschaftsförderungsgesellschaft mbH, within the research activities of the K2 Competence Centre on “Integrated Research in Materials, Processing and Product Engineering,” operated by the Materials Center Leoben Forschung GmbH in the framework of the Austrian COMET Competence Centre Programme, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Stechauner.

Additional information

This article is an invited submission to JMEP selected from presentations at the Symposia “Wetting,” “Interface Design,” and “Joining Technologies’’ belonging to the Topic “Joining and Interface Design” at the European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2013), held September 8-13, 2013, in in Sevilla, Spain, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stechauner, G., Kozeschnik, E. Self-Diffusion in Grain Boundaries and Dislocation Pipes in Al, Fe, and Ni and Application to AlN Precipitation in Steel. J. of Materi Eng and Perform 23, 1576–1579 (2014). https://doi.org/10.1007/s11665-014-0921-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0921-z

Keywords

Navigation