Skip to main content
Log in

Indirect band gaps in quantum dots made from direct-gap bulk materials

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The conditions under which the band gaps of free standing and embedded semiconductor quantum dots are direct or indirect are discussed. Semiconductor quantum dots are classified into three categories; (i) free standing dots, (ii) dots embedded in a direct gap matrix, and (iii) dots embedded in an indirect gap matrix. For each category, qualitative predictions are first discussed, followed by the results of both recent experiments and state of the art pseudopotential calculations. We show that:

  • Free standing dots of InP, InAs, and CdSe will remain direct for all sizes, while dots made of GaAs and InSb will turn indirect below a critical size.

  • Dots embedded within a direct gap matrix material will either stay direct (InAs/GaAs at zero pressure) or will become indirect at a critical size (InSb/InP).

  • Dots embedded within an indirect gap matrix material will exhibit a transition to indirect gap for sufficiently small dots (GaAs/AlAs and InP/GaP quantum well) or will be always indirect (InP/GaP dots, InAs/GaAs above 43 k bar pressure and GeSi/Si dots).

In indirect nanostructures, charge separation can occur with electrons and holes localized on different materials (flat InP/GaP quantum well) or with electrons and holes localized in different layers of the same material (concentric cylindrical GaAs/AlAs layers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Stranski and L. Krastanow, Math.-Naturwiss Kl. Abt. IIb 146, 797 (1938).

    CAS  Google Scholar 

  2. N. Carlsson et al., Appl. Phys. Lett. 66, 3093 (1994).

    Article  Google Scholar 

  3. K. Schmidt, G. Medeiros-Ribeiro, M. Oestreich and P. Petroff, Phys. Rev. B 54, 11346 (1996).

    Article  CAS  Google Scholar 

  4. G. Solomon, J. Trezza, A. Marshall and J. Harris, Phys. Rev. Lett. 76, 952 (1996).

    Article  CAS  Google Scholar 

  5. J. Prieto, G. Armelles, T. Utzmeier, F. Briones, F.C. Ferrer, F. Peiro, A. Cornet and J.R. Morante, Phys. Rev. Lett. 80, 1094 (1998).

    Article  CAS  Google Scholar 

  6. M. Yang, J. Sturm J. Prevost, Phys. Rev. B. 56 1973 (1997).

    Article  CAS  Google Scholar 

  7. M. Reed, Phys. Rev. lett. 60, 5353 (1988).

    Article  Google Scholar 

  8. R. Leon, C. Lobo, T.P. Chin, J.M. Woodall, S. Fofard, S. Ruvimov, Z. Liliental-Weber and M.A. Steven-Kalceff, Appl. Phys. Lett. 72, 1356 (1998).

    Article  CAS  Google Scholar 

  9. B. Junno, T. Junno, M. Miller and L. Samuelson, Appl. Phys. Lett 72, 954 (1998).

    Article  CAS  Google Scholar 

  10. O. Micic, C. Curtis, K. Jones, J. Sprague and A. Nozik, J. Phys. Chem. 98, 4966 (1994).

    Article  CAS  Google Scholar 

  11. S. Empedocles, D. Norris and M. Bawendi, Phys. Rev. Lett. 77, 3873 (1996).

    Article  CAS  Google Scholar 

  12. A. Guzelian, U. Banin, A. Kadavanich, X. Peng and A. Alivisatos, Appl. Phys. Lett. 69, 1432 (1996).

    Article  CAS  Google Scholar 

  13. A. Colvin, V.L. Alivisatos and Alivisatos and J. Tobin, Phys. Rev. Lett. 66, 2786 (1991).

    Article  CAS  Google Scholar 

  14. Landolt and Börnstein, Numerical Data and Functional Relationships in Science and Technology, Vol. 22, Subvol. a (Berlin: Springer-Verlag, 1997).

    Google Scholar 

  15. A. Williamson, J. Kim, L.-W. Wang, S.-H. Wei and A. Zunger, unpublished results.

  16. C. Pryor, J. Kim, L.-W. Wang, A. Williamson and A. Zunger, J. Appl. Phys. 83, 2548 (1998).

    Article  CAS  Google Scholar 

  17. L.-W. Wang and A. Zunger, Phys. Rev. B, 51, 17398 (1995).

    Article  CAS  Google Scholar 

  18. L.-W. Wang and A. Zunger, J. Chem. Phys. 100, 2394 (1994).

    Article  CAS  Google Scholar 

  19. L.W. Wang and A. Zunger, Semiconductor Nanoclusters (Amsterdam: Elsevier Science, 1996).

    Google Scholar 

  20. A. Franceschetti and A. Zunger, Appl. Phys. Lett. 68, 3455 (1996).

    Article  CAS  Google Scholar 

  21. A. Franceschetti and A. Zunger, J. Chem. Phys. 104, 5572 (1996).

    Article  CAS  Google Scholar 

  22. H. Fu and A. Zunger, Phys. Rev. B 55, 1642 (1997).

    Article  CAS  Google Scholar 

  23. H. Fu and A. Zunger, Phys. Rev. B 56, 1496 (1997).

    Article  CAS  Google Scholar 

  24. H. Fu and A. Zunger, Phys. Rev. B 57, R15067 (1998).

  25. H. Fu, L.-W. Wang and A. Zunger, Phys. Rev. B 57, 9971 (1998).

    Article  CAS  Google Scholar 

  26. H. Fu and A. Zunger, Phys. Rev. Lett. 80, 5397 (1998).

    Article  CAS  Google Scholar 

  27. A. Williamson and A. Zunger, Phys. Rev. B Code: BY6599 (1998).

  28. L.-W. Wang and A. Zunger, J. Phys. Chem. 102, 6449 (1998).

    CAS  Google Scholar 

  29. L.-W. Wang and A. Zunger, Phys. Rev B 53, 9579 (1996).

    Article  CAS  Google Scholar 

  30. U. Banin et al., J. Chem. Phys. (in press) (1998).

  31. D. Bertram, O. Micic and A.Nozik, Phys. Rev. B 57 R4265 (1998).

  32. S. Tolbert, A. Herhold, L. Brus and A. Alivisatos, Phys. Rev. Lett. 76, 4384 (1996).

    Article  CAS  Google Scholar 

  33. A. Williamson and A. Zunger, Phys. Rev. B 48, 6724 (1998).

    Article  Google Scholar 

  34. J. Kim, L.-W. Wang and A. Zunger, Phys. Rev. B 57, R9408 (1998).

  35. A. Zunger, MRS Bulletin 23, 35 (1998).

    CAS  Google Scholar 

  36. G. Griffiths, K. Mohammed, S. Subbanna, H. Kroemer and J. Merz, Appl. Phys. Lett. 43, 1059 (1983).

    Article  CAS  Google Scholar 

  37. J. Eshelby, J. Appl. Phys. 25, 255 (1954).

    Article  CAS  Google Scholar 

  38. A. Franceschetti and A. Zunger, Phys. Rev. B 52, 14664 (1995).

    Article  CAS  Google Scholar 

  39. J. Kim, L.-W. Wang and Z. Zunger, Phys. Rev. B 56, R15541 (1997).

  40. A. Franceschetti, S.-H. Wei and A. Zunger, Phys. Rev. B Rapid Commun. 50, 8094 (1994).

    CAS  Google Scholar 

  41. S.-H. Wei and H. Krakauer, Phys. Rev. Lett. 55, 1200 (1985).

    Article  CAS  Google Scholar 

  42. P. Keating, Phys. Rev. 145, 637 (1966).

    Article  CAS  Google Scholar 

  43. C. Ulrich et al., Phys. Rev. B 52, 12212 (1995).

    Article  CAS  Google Scholar 

  44. T. Okuno et al., Phys. Rev. B 57, 1386 (1998).

    Article  CAS  Google Scholar 

  45. M. Pistol, N. Carlsson, W. Persson, C. Seifert and Seifert and L. Samuelson, Appl. Phys. Lett 67, 1438 (1995).

    Article  CAS  Google Scholar 

  46. P. Castrillo et al., Appl. Phys. Lett 67, 1905 (1995).

    Article  CAS  Google Scholar 

  47. A. Williamson, A. Zunger and A. Canning, Phys. Rev. B 57, R4253 (1997).

  48. L.-W. Wang and A. Zunger, Phys. Rev B 56 (1997).

  49. G. Li, A. Goni, K. Syassen, O. Brandt and K. Ploog, Phys. Rev. B 50, 18420 (1994).

    Article  CAS  Google Scholar 

  50. I. Itskevich et al., Phys. Rev. B 54, 16401 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, A.J., Franceschetti, A., Fu, H. et al. Indirect band gaps in quantum dots made from direct-gap bulk materials. J. Electron. Mater. 28, 414–425 (1999). https://doi.org/10.1007/s11664-999-0089-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-999-0089-8

Key words

Navigation