Skip to main content
Log in

Study on the Conductance and Photo-Conductance of ZnO Thin Films at Different Temperatures in Air and N2-Atmosphere

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the photoconductance of ZnO thin films obtained from thermally treated ZnS films grown by a chemical bath deposition method. The measurements of photo-conductance were performed in an atmosphere of air or nitrogen (N2) at different temperatures between 300 K and 375 K. The augmented conductance after ultraviolet (UV) irradiation (330–380 nm) in air fades away slowly to its original value, whereas in a nitrogen atmosphere, a significant part of the augmented conductance remains. Measurements of electrical conductance as a function of temperature in N2 or air, in the dark or the light, seem to indicate that the donor concentration is increased during the UV irradiation, suggesting that oxygen vacancies and interstitials are created. An alternative model for the photoconduction in ZnO is proposed in which the slow increase of conduction during irradiation is explained by an increase of donors instead of photoelectrons. In this model, the photoelectrons would only play a role in the mechanism of the creation of donors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.D. Auret, J.M. Nel, M. Hayes, L. Wu, W. Wesch, and E. Wendler, Superlattice Microstrut 39, 17 (2006).

    Article  Google Scholar 

  2. C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, and H. Shen, J. Appl. Phys. 85, 2595 (1999).

    Article  Google Scholar 

  3. Y. Ma, W.L. Wang, K.J. Liao, and C.Y. Kong, J. Wide Bandgap Mater. 10, 113 (2002).

    Article  Google Scholar 

  4. P. Sharma, K. Sreenivas, and K.V. Rao, J. Appl. Phys. 93, 3963 (2003).

    Article  Google Scholar 

  5. S. Kumar, V. Gupta, and K. Sreenivas, Nanotechnology 16, 1167 (2005).

    Article  Google Scholar 

  6. S.A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 87, 2413 (2000).

    Article  Google Scholar 

  7. Q. Wan, Z.T. Song, W.L. Liu, C.L. Lin, and T.H. Wang, Nanotechnology 15, 559 (2004).

    Article  Google Scholar 

  8. C. Cruz-Vázquez, F. Rocha-Alonzo, S.E. Burruel-Ibarra, M. Barboza-Flores, R. Bernal, and M. Inoue, Appl. Phys. 79, 1941 (2004).

    Article  Google Scholar 

  9. D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, and W.C. Harsch, Solid State Commun. 105, 399 (1998).

    Article  Google Scholar 

  10. T. Edahiro, N. Fujimura, and T. Ito, J. Appl. Phys. 93, 7673 (2003).

    Article  Google Scholar 

  11. C. Pengfei, L. Shengtao, Z. Le, and L. Jianying, Appl. Phys. Lett. 93, 012902 (2008).

    Article  Google Scholar 

  12. Y. Kayanuma, Defect Processes Induced by Electronic Excitation in Insolaters, vol. 2, ed. N. Itoh (Singapore: World Scientific, 1989), p. 12.

    Google Scholar 

  13. K.S. Song and R.T. Williams, Self-Trapped Excitons, Chapters␣1, 5, 6 (Berlin, Springer, 1996).

  14. Y. Yan, M. Al-Jassim, and S.H. Wei, Phys. Rev. B. 72, 161307(R) (2002).

    Article  Google Scholar 

  15. H. Geistlinger, J. Appl. Phys. 80, 1370 (1996).

    Article  Google Scholar 

  16. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes, vol. 15 (Cambridge: Cambridge University press, 1990).

    Google Scholar 

  17. L. Salmon and D.V. Booker, Report No. AERE-R 7129, (Harwell Laboratory, Oxfordshire, 1972).

Download references

Acknowledgement

We acknowledge the technical support of J. C. Avila-Barrera and M. Atondo-Encinas. All figures␣and most of our analyses were made with the computer program Origin 6.1 from OriginLab Corporation. This work was supported by Project: PICA 05/DCEN01 (Universidad de Sonora).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Cruz-Vázquez, T. M. Piters or V. M. Castaño.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burruel-Ibarra, S.E., Cruz-Vázquez, C., Bernal, R. et al. Study on the Conductance and Photo-Conductance of ZnO Thin Films at Different Temperatures in Air and N2-Atmosphere. J. Electron. Mater. 45, 771–778 (2016). https://doi.org/10.1007/s11664-015-4199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4199-1

Keywords

Navigation