Skip to main content

Advertisement

Log in

Thermoelectric Generators from AgBiTe and AgSbTe Thin Films Modified by High-Energy Beam

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The ternary chalcogenides AgBiTe2 and AgSbTe2 belong to the family of semiconductors with disordered NaCl cubic structure in which Ag and Sb occupy metal sublattices. Both compounds are very interesting due to their thermoelectric properties. We have grown single-layer AgBiTe and AgSbTe thin films on silicon (Si) and fused silica (Suprasil) substrates using electron beam deposition. High-energy (MeV) Si-ion bombardment was performed on the thin-film samples at five different fluences between 5 × 1013 ions/cm2 and 7 × 1015 ions/cm2. We have measured the thermoelectric efficiency (figure of merit, ZT) of the fabricated thermoelectric devices by measuring the cross-plane thermal conductivity using the third-harmonic (3ω) method, the cross-plane Seebeck coefficient, and the in-plane electrical conductivity using the van der Pauw method before and after MeV Si-ion bombardment. Rutherford backscattering spectrometry and the Rutherford Universal Manipulation Program (RUMP) simulation package were used to analyze the elemental composition and thickness of the deposited materials on the substrates. The RUMP simulation gave thicknesses for the AgBiTe and AgSbTe thin films of 270 nm and 188 nm, respectively. The figure of merit for AgBiTe started to decrease from the value of 0.37 for the virgin sample after bombardment. We saw similar decreasing behavior for the AgSbTe thin-film system. The figure of merit for AgSbTe started to decrease from the value of 0.88 for the virgin sample after bombardment. MeV Si-ion bombardment caused changes in the thermoelectric properties of the thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Lon, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. Yasuhiro Hayakawa, et al., Thin Solid Films 519, 8532 (2011).

    Article  Google Scholar 

  3. S. Budak, S. Guner, C. Muntele, and D. Ila, Nucl. Instrum. Methods B 267, 1592 (2009).

    Article  Google Scholar 

  4. S. Budak, R. Parker, C. Smith, C. Muntele, K. Heidary, R.B. Johnson, and D. ILA, J. Intell. Mater. Syst. Struct. 24, 1357 (2013).

    Article  Google Scholar 

  5. L.M. Goncalves, J.G. Rocha, C. Couto, P. Alpuim, and J.H. Correia, Sens. Actuators A 145, 75 (2008).

    Article  Google Scholar 

  6. S.B. Riffat and X. Ma, Appl. Therm. Eng. 23, 913 (2003).

    Article  Google Scholar 

  7. H. Xi, L. Luo, and G. Fraisse, Renew. Sustain. Energy Rev. 11, 923 (2007).

    Article  Google Scholar 

  8. F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K.-H. Lee, and N.V. Myung, Electrochim. Acta 53, 8103 (2008).

    Article  Google Scholar 

  9. H.-J. Lee, H. Sung Park, S. Han, and J. Yup Kim, Thermochim. Acta 542, 57 (2012).

    Article  Google Scholar 

  10. X.K. Duan and Y.Z. Jiang, Thin Solid Films 519, 3007 (2011).

    Article  Google Scholar 

  11. C. Zhao-kun, F. Ping, Z. Zhuang-hao, L. Peng-juan, C. Tian-bao, C. Xing-min, L. Jing-ting, L. Guang-xing, and Z. Dong-ping, Appl. Surf. Sci. 280, 225 (2013).

    Article  Google Scholar 

  12. J. Navratil, I. Klichova, S. Karamazov, J. Sramkova, and J. Horak, J. Solid State Chem. 140, 29 (1998).

    Article  Google Scholar 

  13. X.Y. Huang, Z. Xu, and L.D. Chen, Solid State Commun. 130, 181 (2004).

    Article  Google Scholar 

  14. H. Ma, T. Su, P. Zhu, J. Guo, and X. Jia, J. Alloys Compd. 454, 415 (2008).

    Article  Google Scholar 

  15. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  Google Scholar 

  16. G.J. Snyder, The Electrochemical Society Interface, 17, 54 (Fall 2008).

  17. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  18. B.C. Scales, Science 295, 1248 (2002).

    Article  Google Scholar 

  19. B.Y. Yoo, C.-K. Huang, J.R. Lim, J. Herman, M.A. Ryan, J.-P. Fleural, and N.V. Myung, Electrochim. Acta 50, 4371 (2005).

    Article  Google Scholar 

  20. A. Majumdar, Science 303, 777 (2004).

    Article  Google Scholar 

  21. C. Dames and G. Chen, Rev. Sci. Instrum. 76, 124902 (2005).

    Article  Google Scholar 

  22. J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping Range of Ions in Solids (New York: Pergamon, 1985), 321 p.

    Google Scholar 

  23. W.K. Chu, J.W. Mayer, and M.-A. Nicolet, Backscattering Spectrometry (New York: Academic, 1978), pp. 89–122.

    Book  Google Scholar 

  24. L.R. Doolittle and M.O. Thompson, RUMP (Computer Graphics Service, 2002).

  25. B. Zheng, S. Budak, R.L. Zimmerman, C. Muntele, B. Chhay, and D. ILA, Surf. Coat. Technol. 201, 8531 (2007).

    Article  Google Scholar 

  26. S. Budak, C.I. Muntele, R.A. Minamisawa, B. Chhay, and D. Ila, Nucl. Instrum. Methods B 261, 608 (2007).

    Article  Google Scholar 

  27. S. Budak, C. Muntele, B. Zheng, and D. Ila, Nucl. Instrum. Methods B 261, 1167 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Research sponsored by Materials Research Laboratory (MRL), National Science Foundation under NSF-EPSCOR R-II-3 Grant No. EPS-1158862, DOD under Nanotechnology Infrastructure Development for Education and Research through the Army Research Office # W911 NF-08-1-0425, and DOD Army Research Office # W911 NF-12-1-0063, US Department of Energy National Nuclear Security Admin with Grant # DE-NA0001896 and Grant # DE-NA0002687, NSF-REU with Award # 1156137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Budak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budak, S., Guner, S., Muntele, C. et al. Thermoelectric Generators from AgBiTe and AgSbTe Thin Films Modified by High-Energy Beam. J. Electron. Mater. 44, 1884–1889 (2015). https://doi.org/10.1007/s11664-014-3581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3581-8

Keywords

Navigation