Skip to main content
Log in

Use of Field-Effect Density Modulation to Increase ZT for Si Nanowires: A Simulation Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Modulation doping is a promising means of increasing the electrical conductivity of thermoelectric (TE) materials and achieving a high figure of merit (ZT). We compared, qualitatively and quantitatively, the TE performance of a field-effect density modulated Si nanowire channel of diameter D = 12 nm with that of its doped counterpart, by use of self-consistent atomistic tight-binding simulations coupled to the Boltzmann transport equation. We describe the simulation model, and show that as a result of a large improvement in electrical conductivity, gating, rather than doping, can result in greater than three-fold improvement of the TE power factor. Despite the large increase in the electronic part of the thermal conductivity, the total thermal conductivity is still dominated by phonons. Thus, a ZT more than three-fold higher can also be achieved in the gated channel compared with the doped channel. Finally, we show that the power factor peak is obtained when the Fermi level resides ∼k B T below the band edge, as is observed for doped channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Neophytou and H. Kosina, Phys. Rev. B 83, 245305 (2011).

    Article  Google Scholar 

  2. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).

    Article  Google Scholar 

  3. B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 12, 2077 (2012).

    Article  Google Scholar 

  4. B.M. Curtin, E.A. Codecido, S. Krämer, and J.E. Bowers, Nano Lett. 13, 5503 (2013).

    Article  Google Scholar 

  5. Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. MacDonald, R.L.J. Qiu, H.-J. Gao, and X.P.A. Gao, Nano Lett. 12, 6492 (2012).

    Article  Google Scholar 

  6. J. Moon, J.-H. Kim, Z.C.Y. Chen, J. Xiang, and R. Chen, Nano Lett. 13, 1196 (2013).

    Article  Google Scholar 

  7. B.M. Curtin and J.E. Bowers, J. Appl. Phys. 115, 143704 (2014).

    Article  Google Scholar 

  8. W. Liang, A.I. Hochbaum, M. Fardy, O. Rabin, M. Zhang, and P. Yang, Nano Lett. 9, 1689 (2009).

    Article  Google Scholar 

  9. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  10. A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008).

    Article  Google Scholar 

  11. N. Neophytou, O. Baumgartner, Z. Stanojevic, and H. Kosina, Solid State Electron. 90, 44 (2013).

    Article  Google Scholar 

  12. T.B. Boykin, G. Klimeck, and F. Oyafuso, Phys. Rev. B 69, 115201 (2004).

    Article  Google Scholar 

  13. G. Klimeck, S. Ahmed, H. Bae, N. Kharche, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski, and T.B. Boykin, IEEE Trans. Electron. Dev. 54, 2079 (2007).

    Article  Google Scholar 

  14. N. Neophytou, M. Wagner, H. Kosina, and S. Selberherr, J. Electron. Mater. 39, 1902–1908 (2010).

    Article  Google Scholar 

  15. S. Lee, F. Oyafuso, P. Von Allmen, and G. Klimeck, Phys. Rev. B 69, 045316 (2004).

    Article  Google Scholar 

  16. G.D. Mahan and J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996).

    Article  Google Scholar 

  17. T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Phys. Rev. B 68, 125210 (2003).

    Article  Google Scholar 

  18. S. Jin, M.V. Fischetti, and T.-W. Tang, J. Appl. Phys. 102, 083715 (2007).

    Article  Google Scholar 

  19. H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, Appl. Phys. Lett. 51, 1934 (1987).

    Article  Google Scholar 

  20. K. Uchida and S. Takagi, Appl. Phys. Lett. 82, 2916 (2003).

    Article  Google Scholar 

  21. E.B. Ramayya, D. Vasileska, S.M. Goodnick, and I. Knezevic, J. Appl. Phys. 104, 063711 (2008).

    Article  Google Scholar 

  22. N. Neophytou and H. Kosina, Phys. Rev. B 84, 085313 (2011).

    Article  Google Scholar 

  23. H.J. Ryu, Z. Aksamija, D.M. Paskiewicz, S.A. Scott, M.G. Lagally, I. Knezevic, and M.A. Eriksson, Phys. Rev. Lett. 105, 256601 (2010).

    Article  Google Scholar 

  24. N. Neophytou and H. Kosina, J. Appl. Phys. 112, 024305 (2012).

    Article  Google Scholar 

  25. K. Rameshan, N.A. Wong, K. Chan, S.P. Sim, and C.Y. Yang, Solid-State Electron. 46, 153 (2002).

    Article  Google Scholar 

  26. H. Karamitaheri, N. Neophytou, and H. Kosina, J. Electron. Mater. 43, 1829 (2014).

    Article  Google Scholar 

  27. H. Karamitaheri, N. Neophytou, and H. Kosina, J. Appl. Phys. 115, 024302 (2014).

    Article  Google Scholar 

Download references

Acknowledgment

The work leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement no. FP7-263306, and the Austrian Science Fund FWF under project number P25368.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neophytos Neophytou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neophytou, N., Karamitaheri, H. & Kosina, H. Use of Field-Effect Density Modulation to Increase ZT for Si Nanowires: A Simulation Study. J. Electron. Mater. 44, 1599–1605 (2015). https://doi.org/10.1007/s11664-014-3488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3488-4

Keywords

Navigation